Answer:
The distance between the places where the intensity is zero due to the double slit effect is 15 mm.
Explanation:
Given that,
Distance between the slits = 0.04 mm
Width = 0.01 mm
Distance between the slits and screen = 1 m
Wavelength = 600 nm
We need to calculate the distance between the places where the intensity is zero due to the double slit effect
For constructive fringe
First minima from center

Second minima from center

The distance between the places where the intensity is zero due to the double slit effect



Put the value into the formula



Hence, The distance between the places where the intensity is zero due to the double slit effect is 15 mm.
Answer:
v= 300 m/s
Explanation:
Given that
altitude ,h= 4500 m
The mass ,m = 3 kg
Lets take acceleration due to gravity , g= 10 m/s²
The speed before impact at sea level = v
Initial speed ,u = 0 m/s
We know that
v²=u²+2 g h
v=final speed
u=initial speed
h=height
Now by putting the values in the above equation
v² = 0²+ 2 x 10 x 4500
v²=90000
v= 300 m/s
Therefore the speed at sea level will be 300 m/s.
Answer:
3.67 N
Explanation:
From the question given above, the following data were obtained:
Charge of 1st object (q₁) = +15.5 μC
Charge of 2nd object (q₂) = –7.25 μC
Distance apart (r) = 0.525 m
Force (F) =?
Next, we shall convert micro coulomb (μC) to coulomb (C). This can be obtained as follow:
For the 1st object
1 μC = 1×10¯⁶ C
Therefore,
15.5 μC = 15.5 × 1×10¯⁶
15.5 μC = 15.5×10¯⁶ C
For the 2nd object:
1 μC = 1×10¯⁶ C
Therefore,
–7.25 μC = –7.25 × 1×10¯⁶
–7.25 μC = –7.25×10¯⁶ C
Finally, we shall determine the force. This can be obtained as follow:
Charge of 1st object (q₁) = +15.5×10¯⁶ C
Charge of 2nd object (q₂) = –7.25×10¯⁶ C
Distance apart (r) = 0.525 m
Electrical constant (K) = 9×10⁹ Nm²/C²
Force (F) =?
F = Kq₁q₂ / r²
F = 9×10⁹ × 15.5×10¯⁶ × 7.25×10¯⁶ / 0.525²
F = 3.67 N
Therefore, the force on the object is 3.67 N
C is the answer I think good luck