Answer:
35,000,000,000 mL
Explanation:
You first multiply 35 times 1000.
35,000 L
Now you multiply 35,000 times 10^6
35,000,000,000 mL
Answer: Option (4) is the correct answer.
Explanation:
A mixture is defined as a substance that contains two or more different substance that are physically mixed with each other.
If solute particles are evenly distributed in a solvent then it is known as a homogeneous mixture.
For example, salt dissolved in water is a homogeneous mixture.
If solute particles are unevenly distributed into the solvent then it is known as a heterogeneous mixture.
For example, sand in water is a heterogeneous mixture.
Thus, we can conclude that the statement a mixture must contain at least two different substances, is correct about mixtures.
Answer:
Explanation:
For the reaction
C2H5OH (l) + 3 O2(g) = 2CO2(g) + 3 H2O
We can calculate the standard molar enthalpy of combustion using the standard enthalpies of formation of the species involved in the reaction according to Hess law:
ΔHºc = 2ΔHºf CO2 (g) + 3ΔHºfH2O(l) - ( ΔHºf C2H5OH (l) - 3ΔHºfO2 (g) )
( we were not give the water state but we know we are at standard conditions so it is in its liquid state )
The ΔHºfs can be found in appropiate reference or texts.
ΔHºc = 2ΔHºf CO2 (g)+ 3ΔHºfH2O(l) - ( ΔHºf C2H5OH (l) -+3ΔHºfO2 (g) )
= [ 2 ( -393.52 ) + 3 ( -285.83 ) ] - [( -276.2 + 0 ) ] kJ
ΔHºc = -1368.33 kJ
Answer:
<h2>It makes the current viable enough to pass through an exterior wire.</h2>
Explanation:
Electrochemical cells primarily comprise of two half-cells. These half-cells assist in isolating the oxidation and reduction half-reactions. These two reactions are linked by a wire which allows the current to move from one edge to the other. The oxidation at the anode and the reduction take place at the cathode and the addition of a salt bridge helps in completing the circuit and permits the current to flow and leads to the generation of electricity.
The azimuthal quantum number (l) determines its orbital angular momentum and describes the shape of the orbital.
s-orbitals (for example 1s, 2s) are spherically symmetric around the nucleus of the atom.
p-orbitals are dumb-bell shaped. l = 0,1...n-1, when l = 1, that is p subshell.
d-orbitals are butterfly shaped.