Answer:
Bonding in chemistry is known as chemical bonding which means the interaction or attraction between molecules.
Chemical bonds are of different type such as ionic, covalent, hydrogen, and metallic. Ionic bonds are formed by the transfer of valence electron from one atom to other and there is unequal distribution of electrons between two or more atoms. Ionic bonds forms two oppositely charges ions positively charged (loses electron) or negatively charged (gains electron).
Covalent bond are the strong chemical bonds that form due to equal sharing of electron pairs between atoms. They form a stable element and have stable attraction or repulsive forces.
Explanation:
a) Using Beer-Lambert's law :
Formula used :

where,
A = absorbance of solution = 0.945
c = concentration of solution = ?
l = length of the cell = 1.20 cm
= molar absorptivity of this solution =


(
)
14.16 μM is the molarity of the red dye solution at the optimal wavelength 519nm and absorbance value 0.945.
b) 
1 L of solution contains
moles of red dye.
Mass of
moles of red dye:



c) In order to dilute red dye solution by 5 times, we will need to add 1 L of water to solution of given concentration.
Concentration of red dye solution = 
Concentration of red solution after dilution = c'



The final concentration of the diluted solution is 
Answer:
The answer is "2%"
Explanation:
Equation:


Formula:
![Ka = \frac{[H^{+}][NO_2^{-}]}{[HNO_2]}](https://tex.z-dn.net/?f=Ka%20%3D%20%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5BNO_2%5E%7B-%7D%5D%7D%7B%5BHNO_2%5D%7D)
Let
at equilibrium

therefore,
![[H^{+}] = 2.0\times 10^{-2} \ M = 0.02 \ M](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3D%202.0%5Ctimes%2010%5E%7B-2%7D%20%5C%20M%20%3D%200.02%20%5C%20M)
Calculating the % ionization:
![= \frac{([H^{+}]}{[HNO_2])} \times 100 \\\\= \frac{0.02}{1}\times 100 \\\\= 2\%\\\\](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B%28%5BH%5E%7B%2B%7D%5D%7D%7B%5BHNO_2%5D%29%7D%20%5Ctimes%20100%20%5C%5C%5C%5C%3D%20%5Cfrac%7B0.02%7D%7B1%7D%5Ctimes%20100%20%5C%5C%5C%5C%3D%202%5C%25%5C%5C%5C%5C)
Subtracting the mass of (flask+water) from the empty flask gives:
95.023 g - 85.135 g = 9.888 grams of water
Dividing this by the given volume of 10.00 mL water gives:
9.888 grams of water / 10.00 mL of water = 0.9888 g/mL of water
Therefore, based on this sample, the density of water is 0.9888 g/mL, which is close to the usually accepted approximation of 1 g/mL.