Answer:
THE MOLAR MASS OF THE UNKNOWN MOLECULAR SUBSTANCE IS 200 G/MOL.
Explanation:
Mass of the unknown substance = 0.50 g
Freezing point of the solution = 3.9 °C
Freezing point of pure benzene = 5.5 °C
Freezing point dissociation constant Kf = 5.12°C/m
First, calculate the temperature difference between the freezing point of pure benzene and the final solution freezing point.
Change in temperature = 5.5 -3.9 = 1.6 °C
Next is to calculate the number of moles or molarity of the compound that dissolved.
Using the formula:
Δt = i Kf m
Assume i = 1
So,
1.6 °C = 1 * 5.12 * x/ 0.005 kg of benzene
x = 1.6 * 0.008 / 5.12
x = 0.0128 / 5.12
x = 0.0025 moles.
Next is to calculate the molar mass using the formula, molarity = mass / molar mass
Molar mass = mass / molarity
Molar mass = 0.50 g /0.0025
Molar mass = 200 g/mol
Hence, the molar mass of the unknown compound is 200 g/mol
Explanation:
nose amigo, la verdad yo también tengo dificultades escolares muchísimas gracias, Dios te bendiga en otro idioma por cierto mi anime favorito es cowboy beboop
Answer : The types of radiation known to be emitted by radioactive elements are, alpha particles, beta particles, or gamma rays.
Explanation :
Radioactive decay : It the process in which an unstable atomic nucleus loses energy by emitting the radiations like, alpha particles, beta particles, or gamma rays.
The naturally occurring radioactive elements are, radium, thorium, and uranium.
Alpha particle : It is also known as alpha radiation or alpha ray that consists of 2 protons and 2 neutrons that are bound together into a particle that is identical to the helium nucleus. It is produced in the process of alpha decay.
Beta particle : It is also known as beta radiation or beta ray. During the beta decay process, a high energy and speed electron or positron are emitted by the radioactive decay of atomic nucleus.
Gamma particle : It is also a gamma radiation or gamma ray that is arising from the radioactive decay of atomic nuclei. It has shortest wavelength waves and imparts high photon energy can pass through most forms of matters because they have no mass.
D is the correct answer
every other option contains an element
1:2:6? Ba(NO3)2 +Na2SO4 -----> BaSO4 + 2NaNO3
Ba(NO3)2
BaSO4
NaNO 3
Na2SO4