Answer:
the velocity of the fish relative to the water when it hits the water is 9.537m/s and 66.52⁰ below horizontal
Explanation:
initial veetical speed V₀y=0
Horizontal speed Vx = Vx₀= 3.80m/s
Vertical drop height= 3.90m
Let Vy = vertical speed when it got to the water downward.
g= 9.81m/s² = acceleration due to gravity
From kinematics equation of motion for vertical drop
Vy²= V₀y² +2 gh
Vy²= 0 + ( 2× 9.8 × 3.90)
Vy= √76.518
Vy=8.747457
Then we can calculate the velocity of the fish relative to the water when it hits the water using Resultant speed formula below
V= √Vy² + Vx²
V=√3.80² + 8.747457²
V=9.537m/s
The angle can also be calculated as
θ=tan⁻¹(Vy/Vx)
tan⁻¹( 8.747457/3.80)
=66.52⁰
the velocity of the fish relative to the water when it hits the water is 9.537m/s and 66.52⁰ below horizontal
The relative density of gold is 19.3 it means the ratio obtained by dividing the density of gold by water at temp of 4 degree celcius is 19.3
Answer:
Value of electric field along the axis and equitorial axis
and
respectively.
Explanation:
Given :
Distance between charges , 
Magnitude of charges , 
Dipole moment , 
Case A) (x,y) = (12.0 cm, 0 cm) :
Electric field of dipole in its axis ,

Putting all values and 
We get , 
Case B) (x,y) = (0 cm, 12.0 cm) :
Electric field of dipole on equitorial axis ,

Putting all values and
We get , 
Hence , this is the required solution.
Let say for every 5 s of time interval the speed will remain constant
so it is given as
v(mi/h) 16 21 23 26 33 30 28
now we have to convert the speed into ft/s as it is given that 1 mi/h = 5280/3600 ft/s
so here we will have
v(ft/s) 23.5 30.8 33.73 38.13 48.4 44 41.1
now for each interval of 5 s we will have to find the distance cover for above interval of time



so here it will cover 1298.1 ft distance in 30 s interval of time