Answer:
= 201.53 meters
Explanation:
A car started from rest and accelerated at 9.54 m/s^2 for 6.5 seconds. How much distance was covered by the car?
Use the formula d = 
where d is the distance, t is the time and "a" is the acceleration.

Answer:
k = 104.46 N/m
Explanation:
Here we can use energy conservation
so we will have
initial gravitational potential energy = final total spring potential energy
as we know that she falls a total distance of 31 m
while the unstretched length of the string is 12 m
so the extension in the string is given as


so we have



Answer:
the initial speed of the arrow before joining the block is 89.85 m/s
Explanation:
Given;
mass of the arrow, m₁ = 49 g = 0.049 kg
mass of block, m₂ = 1.45 kg
height reached by the arrow and the block, h = 0.44 m
The gravitational potential energy of the block and arrow system;
P.E = mgh
P.E = (1.45 + 0.049) x 9.8 x 0.44
P.E = 6.464 J
The final velocity of the system after collision is calculated as;
K.E = ¹/₂mv²
6.464 = ¹/₂(1.45 + 0.049)v²
6.464 = 0.7495v²
v² = 6.464 / 0.7495
v² = 8.6244
v = √8.6244
v = 2.937 m/s
Apply principle of conservation of linear momentum to determine the initial speed of the arrow;

Therefore, the initial speed of the arrow before joining the block is 89.85 m/s
Answer:
v’= 279.66 m / s
Explanation:
We work this exercise using the conservation of the moment. For this we define the system formed by the two blocks, therefore the forces during the collision are internal of the action and reaction type.
Initial instant. Before the crash
p₀ = m v₀ + 0
Final moment. After the crash
p_f = m v + M v ’
how the tidal wave is preserved
p₀ = p_f
m v₀ = m v + M v ’
v = 
let's calculate
v ’=
v ’=
v ’= 279.66 m / s
Impulse = change in momentum = F x dt
Where F is sufficiently large and dt is very small(tending to zero).
Therefore impulse = mass x final velocity - mass x initial velocity
= 975 x 3 - 975 x 0.5
= 2437.5 Kg-m/s.
Hence option C is correct.