Answer:
Explanation:
An information contains
25Hz and 75Hz sine wave
Sample frequency is 500Hz
The analogy signal are generally
y(t) = Asin(2πx/λ - wt), w=2πf
y1(t)=Asin(2πx/λ - wt)
y1(t)=Asin(2πx/λ - 2π•25t)
y1(t)=Asin(2πx/λ - 50πt)
Similarly
y2(t)=Asin(2πx/λ - 150πt)
Using Nyquist theorem
Nyquist Theorem states that in order to adequately reproduce a signal it should be periodically sampled at a rate that is 2 times the highest frequency you wish to record.
From sampling
f(nyquist)=f(sample)/2
f(nyquist)=500/2
f(nyquist)=250Hz
From signal
The highest frequency is 150Hz
F(nyquist) = 2×F(highest)
f(nyquist)= 2×150
f(nyquist)= 300Hz
Sample per frequency Ns is given as
Ns=F(sample)/F(highest signal)
Ns=500/150
Ns=3.33sample/period
This is above nyquist rate of 2sample/period
So signal below 300Hz reproduced without aliasing.
The highest resulting frequency is 300Hz
Va ser 0.0900 yo creo preo que esta respuesta te ayude
Answer:
Explanation:
horizontal is zero slope, and the vertical is undefined
The cyclist accelerates from 0 m/s to 9 m/s in 3 seconds with an acceleration of 3 m/s².
Answer:
Explanation:
Acceleration exerted by an object is the measure of change in speed or velocity of that object with respect to time. So the initial and final velocities play a major role in determining the acceleration of the cyclist. As here the initial velocity of the cyclist is the speed at rest and that is given as 0 m/s. Then after 3 seconds, the velocity of the cyclist changes to 9 m/s.
Then acceleration = change in velocity/Time.
Acceleration = (9-0)/3=9/3=3 m/s².
So the cyclist accelerates from 0 m/s to 9 m/s in 3 seconds with an acceleration of 3 m/s².
Answer: Heat will transfer from the water to the air. When a mass of air moves on a warmer surface it is heated by its base. Then thermal instability develops in the lower layers and then extends upwards. If the air initially contained inversions, these are destroyed and a strong gradient is established uniformly in the lower troposphere temperature.