On the change in potential energy
Plasma...I believe is always a good conductor of electricity. I was tempted to say a solid, but not all solids are the same in composition and that goes for liquid and gas as well.
Hopefully this helped and good luck.
Answer:
0.0928km/min (4dp)
Explanation:
To find the jogger's speed in km per minute, we just need to divide the number of km jogged by the time in minutes it took to jog that distance. This will give us the distance they jogged every minute which is their speed.
4km in 32 minutes:
4/32 = 0.125km/min
2km in 22 minutes:
2/22 = 0.091 (3dp)km/min
1km in 16 minutes:
0.0625km/min
Now to find the average speed of these 3 speeds, we just add them all together and divide by how many values there are (3 values).
Average (mean) = 
Average = 0.2785/3
Average speed of jogger = 0.0928 (4dp) km/min
Hope this helped!
To solve this problem we will apply the concepts related to centripetal acceleration, which will be the same - by balance - to the force of gravity on the body. To find this acceleration we must first find the orbital velocity through the Doppler formulas for the given periodic signals. In this way:

Here,
Orbital Velocity
Maximal Wavelength
Average Wavelength
c = Speed of light
Replacing with our values we have that,

<em>Note that the average signal is 3.000000m</em>

Now using the definition about centripetal acceleration we have,

Here,
v = Orbit Velocity
r = Radius of Orbit
Replacing with our values,



Applying Newton's equation for acceleration due to gravity,

Here,
G = Universal gravitational constant
M = Mass of the planet
r = Orbit
The acceleration due to gravity is the same as the previous centripetal acceleration by equilibrium, then rearranging to find the mass we have,



Therefore the mass of the planet is 