Answer:
Explanation:
Mass of ball Is m=96.1g=0.0961kg
Height above spring is 59.1cm
L=0.591m
Extension of the spring is 4.75403cm
e=0.0475403m
Then the distance the ball traveled is H=L+e
H=0.591+0.0475403
H=0.6385403m
Then, the potential energy of the ball is given as
P.E=mgh
P.E=0.0961×9.81×0.6385403
P.E=0.602J
From conservation of energy, energy cannot be created nor destroy but can be transferred from one form to another
Then, the P.E is transferred to the work done by the spring
Then, Work done by spring is given as
W=½ke²
W=P.E=½×k×0.0475403²
0.602=½×k×0.0475403²
k=0.602×2/0.0475403²
k=532.72N/m
The spring constant is 532.72 N/m
To find:
Which type of mechanical wave is a water wave?
Explanation:
The water wave is a combination of longitudinal and transverse waves. They are a type of wave called surface waves. The surface waves are the waves that transmit energy in the interface between two mediums.
Final answer:
Thus the correct answer is option C.
I don’t see any answer choice but the best way is asking questions about the natural phenomenon, making hypothesis, and predicting the consequences in the hypothesis.
Answer:
All are examples
Explanation:
Football acted upon by the force of the foot
Bicycle acted on by imbalanced force of gravity
Friction of dirt on player slows his run.
stick and water acted on by imbalanced force of gravity
Your potential energy at the top of the hill was (mass) x (gravity) x (height) .
Your kinetic energy at the bottom of the hill is (1/2) x (mass) x (speed)² .
If there was no loss of energy on the way down, then your kinetic energy
at the bottom will be equal to your potential energy at the top.
(1/2) x (mass) x (speed)² = (mass) x (gravity) x (height)
Divide each side by 'mass' :
(1/2) x (speed)² = (gravity) x (height) . . . The answer we get
will be the same for every skater, fat or skinny, heavy or light.
The skater's mass doesn't appear in the equation any more.
Multiply each side by 2 :
(speed)² = 2 x (gravity) x (height)
Take the square root of each side:
<u>Speed at the bottom = square root of(2 x gravity x height of the hill)</u>
We could go one step further, since we know the acceleration of gravity on Earth:
Speed at the bottom = 4.43 x square root of (height of the hill)
This is interesting, because it says that a hill twice as high won't give you
twice the speed at the bottom. The final speed is only proportional to the
<em>square root </em>of the height, so in order to double your speed, you need to
find a hill that's <em>4 times</em> as high.