The circuit is in parallel connection
Equivalent resistance = 1/Req = 1/R1 + 1/R2 + 1/R3
From the information given,
R1 = 5
R2 = 2
R3 = 4
1/Req = 1/5 + 1/2 + 1/4 = (4 + 10 + 5)/20 = 19/20
Req = 20/19 = 1.053 ohms
I = V/R
Given that V = 12,
Current flow through circuit = 12/1.053 = 11.4 A
I1 + I2 + I3 = 11.4
I1 = 12/5 = 2.4 A
I2 = 12/2 = 6 A
I3 = 12/4 = 3A
Multiply all the sides and thats your answer
Answer:
32 cm
Explanation:
f = focal length of the converging lens = 16 cm
Since the lens produce the image with same size as object, magnification is given as
m = magnification = - 1
p = distance of the object from the lens
q = distance of the image from the lens
magnification is given as
m = - q/p
- 1 = - q/p
q = p eq-1
Using the lens equation, we get
1/p + 1/q = 1/f
using eq-1
1/p + 1/p = 1/16
p = 32 cm
This thermal energy flows as heat within the box and floor, ultimately raising the temperature of both of these objects.