1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ira [324]
3 years ago
8

At t =0 one toy car is set rolling on a straight track with intial position 17.0 cm , intial velocity -3 cm/s, and constant acce

leration 2.30 cm/s^2 . At the same moment , another toy car is set rolling on an adjacent track with initial position 9.5 cm , intial velocity 5.0 cm/s, and constant zero acceleration. (A) at the time, if any, do the two cars have equal speeds? (B) what are their speeds at that time? (c) at what time(s) , if any , do the cars pass each other? (D) what are their location at that time?
Physics
1 answer:
Katena32 [7]3 years ago
4 0

Answer:

a) 5.65 s

b) 5cm/s

c) They will pass each other at both 1.1168 s and 5.84s

d)15.084cm and 38.7 cm

Explanation:

For part A, you need to keep in mind that acceleration is the rate of change of velocity per unit of time. For a constant acceleration, this can be told in this way:

a = \frac{v - v_o}{t}

Reordering this equation, we can get v in terms of the initial velocity, the acceleration, and the time elapsed:

v = at + v_o

Now, we can get the expressions for velocity of each toy car, and equalize them:

v_1 =a_1t + v_o_1\\v_2 =a_2t + v_o_2\\v_1 = v2\\a_1t +v_o_1 =a_2t + v_o_2\\(a_1 - a_2)t = v_o_2 - v_o_1\\t = \frac{v_o_2 - v_o_1}{a_1 - a_2} = \frac{5cm/s - (-3cm/s)}{2.3 cm/s^2 - 0 cm/s^2}= 3.47 s

As toy car has no acceleration and, therefore, constant speed, both car will have the same speed when toy car 1 reaches this velocity = 5cm/s

c) The position of car 1, as it follows a constant acceleration motion, is given by this equation:

x_1 = \frac{1}{2}a_1t^2 + v_o_1t + x_o_1

The position for car 2, as it has constant velocity, is given by this equation:

x_2 = v_2t + x_o_2

We equalize both equation to find the time where the cars pass each other:

x_1 = x_2\\\frac{1}{2}a_1t^2 + v_o_1t + x_o_1 = v_2t+x_o_2\\\frac{1}{2} a_1t^2 + (v_o_1 - v_2)t + x_o_1 - x_o_2 = 0\\\frac{1}{2}2.3m/s^2t^2 +(-3cm/s-5cm/s)t+ 17cm - 9.5cm = 0\\1.15t^2 -8t + 7.5 = 0 | a = 1.15, b = -8, c = 7.5\\t = \frac{-b +-\sqrt{b^2 - 4ac}}{2a} = 5.84s | 1.1168 s

The car will pass each other at both 1.1168s and 5.84s.

For the positions, we solve any of the position equation with the solutions:

x = v_2*t + x_o_2 = 5cm/s *5.84s + 9.5cm = 38.7 cm\\x = 5cm/s * 1.1168s + 9.5cm = 15.084 cm

You might be interested in
Can u help me with C
Vladimir79 [104]
I believe it would be 2m/s.
6 0
3 years ago
Read 2 more answers
A 5.75 mm high firefly sits on the axis of, and 11.3 cm in front of, the thin lens A, whose focal length is 5.77 cm . Behind len
weeeeeb [17]

Answer

given,

focal length of lens A = 5.77 cm

focal length of lens B= 27.9 cm

flies distance from mirror = 11.3 m

now,

Using lens formula

\dfrac{1}{f} = \dfrac{1}{p} + \dfrac{1}{q}

\dfrac{1}{5.77} = \dfrac{1}{11.3} + \dfrac{1}{q}

q =11.79 cm

image of lens A is object of lens B

distance of lens = 59.9 - 11.79 = 48.11

now, Again applying lens formula

\dfrac{1}{f} = \dfrac{1}{p} + \dfrac{1}{q'}

\dfrac{1}{27.9} = \dfrac{1}{48.11} + \dfrac{1}{q'}

q' =66.41 cm

hence, the image distance from the second lens is equal to q' =66.41 cm

6 0
3 years ago
Underground water is being pumped into a pool whose cross section is 3 m x 4 m while water is discharged through a 0.076m-diamet
Svetllana [295]
Given:

Area of pool = 3m×4m
Diameter of orifice = 0.076m
Outlet Velocity = 6.3m/s
Accumulation velocity = 1.5cm/min

Required:

Inlet flowrate

Solution:

The problem can be solved by this general formula.

Accumulation = Inlet flowrate - Outlet flowrate
Accumulation velocity × Area of pool = Inlet flowrate - Outlet velocity × Area of orifice

First, we need to convert the units of the accumulation velocity into m/s to be consistent.

Accumulation velocity = 1.5cm/min × (1min/60s)×(1m/100cm)
Accumulation velocity = 0.00025 m/s

We then calculate the area of the pool and the area of the orifice by:

Area of pool = 3 × 4 m²
Area of pool = 12m²

Area of orifice = πd²/4 = π(0.076m)²/4
Area of orifice = 0.00454m²

Since we have all we need, we plug in the values to the general equation earlier

Accumulation velocity × Area of pool = Inlet flowrate - Outlet velocity × Area of orifice

0.00025 m/s × 12m² = Inlet flowrate - 6.3m/s × 0.00454m²

Transposing terms,

Inlet flowrate = 0.316 m³/s
6 0
3 years ago
If you lift the front wheel of a poorly maintained bicycle off the ground and then start it spinning at 0.69 rev/s , friction in
Sindrei [870]

Answer:

magnitude of the frictional torque is 0.11 Nm

Explanation:

Moment of inertia I = 0.33 kg⋅m2

Initial angular velocity w° = 0.69 rev/s = 2 x 3.142 x 0.69 = 4.34 rad/s

Final angular velocity w = 0 (since it stops)

Time t = 13 secs

Using w = w° + §t

Where § is angular acceleration

O = 4.34 + 13§

§ = -4.34/13 = -0.33 rad/s2

The negative sign implies it's a negative acceleration.

Frictional torque that brought it to rest must be equal to the original torque.

Torqu = I x §

T = 0.33 x 0.33 = 0.11 Nm

5 0
3 years ago
A measurement must include both a number and a(an)
IrinaK [193]
<span>A measurement must include both a number and an unit of measurement. </span>
7 0
3 years ago
Other questions:
  • Contrast the nucleus and electron in a cloud
    8·1 answer
  • Need help with this question
    5·1 answer
  • Two long wires are oriented so that they are perpendicular to each other, and at their closest they are 20.0 cm apart. What is t
    14·1 answer
  • How do you find speed of a ball at maximum height
    13·1 answer
  • If an object of mass 70kg falls from a height of 500 m, what is the maximum velocity of the object?
    14·1 answer
  • A mnemonic device in which phrases or poems use the first letter of each word to help a person remember the information is an ex
    11·2 answers
  • A ray of light travelling obliquely from a rarer medium to a denser medium goes _______​
    8·1 answer
  • I am the only non-metal in Group 14. Who am I?
    14·1 answer
  • Is my answer correct? Please i need to know
    13·2 answers
  • After meeting the end the wave willa- reflect with larger amplitude.b- disappear.c- reflect with the same displacement. (not inv
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!