1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ira [324]
3 years ago
8

At t =0 one toy car is set rolling on a straight track with intial position 17.0 cm , intial velocity -3 cm/s, and constant acce

leration 2.30 cm/s^2 . At the same moment , another toy car is set rolling on an adjacent track with initial position 9.5 cm , intial velocity 5.0 cm/s, and constant zero acceleration. (A) at the time, if any, do the two cars have equal speeds? (B) what are their speeds at that time? (c) at what time(s) , if any , do the cars pass each other? (D) what are their location at that time?
Physics
1 answer:
Katena32 [7]3 years ago
4 0

Answer:

a) 5.65 s

b) 5cm/s

c) They will pass each other at both 1.1168 s and 5.84s

d)15.084cm and 38.7 cm

Explanation:

For part A, you need to keep in mind that acceleration is the rate of change of velocity per unit of time. For a constant acceleration, this can be told in this way:

a = \frac{v - v_o}{t}

Reordering this equation, we can get v in terms of the initial velocity, the acceleration, and the time elapsed:

v = at + v_o

Now, we can get the expressions for velocity of each toy car, and equalize them:

v_1 =a_1t + v_o_1\\v_2 =a_2t + v_o_2\\v_1 = v2\\a_1t +v_o_1 =a_2t + v_o_2\\(a_1 - a_2)t = v_o_2 - v_o_1\\t = \frac{v_o_2 - v_o_1}{a_1 - a_2} = \frac{5cm/s - (-3cm/s)}{2.3 cm/s^2 - 0 cm/s^2}= 3.47 s

As toy car has no acceleration and, therefore, constant speed, both car will have the same speed when toy car 1 reaches this velocity = 5cm/s

c) The position of car 1, as it follows a constant acceleration motion, is given by this equation:

x_1 = \frac{1}{2}a_1t^2 + v_o_1t + x_o_1

The position for car 2, as it has constant velocity, is given by this equation:

x_2 = v_2t + x_o_2

We equalize both equation to find the time where the cars pass each other:

x_1 = x_2\\\frac{1}{2}a_1t^2 + v_o_1t + x_o_1 = v_2t+x_o_2\\\frac{1}{2} a_1t^2 + (v_o_1 - v_2)t + x_o_1 - x_o_2 = 0\\\frac{1}{2}2.3m/s^2t^2 +(-3cm/s-5cm/s)t+ 17cm - 9.5cm = 0\\1.15t^2 -8t + 7.5 = 0 | a = 1.15, b = -8, c = 7.5\\t = \frac{-b +-\sqrt{b^2 - 4ac}}{2a} = 5.84s | 1.1168 s

The car will pass each other at both 1.1168s and 5.84s.

For the positions, we solve any of the position equation with the solutions:

x = v_2*t + x_o_2 = 5cm/s *5.84s + 9.5cm = 38.7 cm\\x = 5cm/s * 1.1168s + 9.5cm = 15.084 cm

You might be interested in
Una cuerda de 20 pies se estira entre dos arboles. Un peso W cuelga del centro de la cuerda hace que el punto medio de la misma
Galina-37 [17]

Answer:

La magnitud de la masa del peso es 78.447 libras-masa.

Explanation:

La tensión es una fuerza de reacción de la cuerda causada por la acción de una fuerza externa. En este caso, esa fuerza externa es el peso que cuelga en el centro de la cuerda. Abajo hemos adjuntado una representación simplificada del enunciado.

Por las leyes de Newton, tenemos la siguiente ecuación de equilibrio conformada por tres fuerzas:

\vec T_{1} + \vec T_{2} + \vec W = (0, 0)\, [N] (1)

Donde:

\vec T_{1}, \vec T_{2} - Tensiones a cada lado de la cuerda, en newtons.

\vec W- Peso, en newtons.

Si sabemos que \vec T_{1} = T\cdot (\cos \alpha, \sin \alpha), \vec T_{2} = T\cdot (-\cos \alpha, \sin \alpha) y \vec W = W\cdot (0, -1), entonces tenemos la siguiente ecuación vectorial:

T\cdot (\cos \alpha, \sin \alpha) + T\cdot (-\cos\alpha, \sin \alpha) + W\cdot (0, -1) = (0,0)

T\cdot (0, 2\cdot \sin \alpha) = W\cdot (0, 1)

Esto permite reducir la anterior expresión a una fórmula escalar:

2\cdot T\cdot \sin \alpha = W

Donde \alpha es el ángulo de inclinación de la cuerda, medido en grados sexagesimales.

El ángulo de inclinación de la cuerda se determina mediante la siguiente fórmula trigonométrica inversa es:

\alpha = \tan^{-1} \left(\frac{2\,ft}{10\,ft}\right)

\alpha \approx 11.310^{\circ}

Si conocemos que \alpha \approx 11.310^{\circ} y T = 200\,lbf, entonces la magnitud del peso es:

W = 2\cdot (200\,lb)\cdot \sin 11.310^{\circ}

W \approx 78.447\,lbf

En el Sistema Imperial, las fuerzas son medidas en forma gravitacional, entonces la magnitud de la fuerza gravitacional del peso equivale a la magnitud de su masa. En síntesis, la magnitud de la masa es 78.447\,lbm.

La magnitud de la masa del peso es 78.447 libras-masa.

7 0
3 years ago
What are the three main ideas associated with Newton's second law of motion
nevsk [136]
The three main ideas related to Newton’s Second Law are as follows :
1.Acceleration is the result of unbalanced forces.
2.A larger force makes a proportionally larger acceleration.
3.Acceleration is inversely proportional to mass.

Hope this helps!
6 0
2 years ago
Read 2 more answers
What type of wave is a sound wave
Yanka [14]
Hey there!
A sound wave is a<u> longitudinal wave</u>, meaning that the motion of the particles of the wave is parallel to the direction of the motion of the wave.
Hope this helps!
5 0
3 years ago
Read 2 more answers
You apply a 50 N rightward force to a 4 kg cart to accelerate it across a horizontal surface at a rate of 3.28m/s2.
liq [111]

Answer:

The force of friction is 36.88 N

The coefficient of friction is 0.94

Explanation:

Lets explain how to solve the problem

The force applied is 50 N rightward

The mass of the cart is 4 kg

The applied force makes the cart accelerate across a horizontal surface

The acceleration is 3.28 m/s²

We need to find the force of friction acting upon the cart

According to Newton's law

→ ∑ F in direction of motion = mass × acceleration

We have two horizontal forces acting on the cart

→ The force applied = 50 N

→ The force of friction F_{x} in opposite direction of motion

→ The mass = 4 kg

→ Acceleration = 3.28 m/s²

Substitute these values in the rule

→ 50 - F_{x} = 4 × 3.28

→ 50 -  F_{x} = 13.12

Add  F_{x} for both sides

→ 50 =  F_{x} + 13.12

Subtract 13.12 from both sides

→ 36.88 =  F_{x}

<em>The force of friction is 36.88 N</em>

→ The force of friction = μ R

where R is the normal reaction and μ is the coefficient of friction

→ R = mg

where m is the mass of the cart and g is the acceleration of gravity

→ F_{x} = μ mg

→ g = 9.8 m/s² , m = 4 kg , F_{x} = 36.88 N

Substitute these values in the rule

→ 36.88 = μ (4)(9.8)

→ 36.88 = 39.2 μ

Divide both sides by 39.2

→ μ = 0.94

<em>The coefficient of friction is 0.94</em>

7 0
3 years ago
The average marathon runner can complete the 42.2-km distance of the marathon in 3 h and 30 min. If the runner's mass is 85 kg,
Semenov [28]

Answer:

the runner's average kinetic energy during the run is 476.96 J.

Explanation:

Given;

mass of the runner, m = 85 kg

distance covered by the runner, d = 42.2 km = 42,200 m

time to complete the race, t = 3 hours 30 mins = (3 x 3600s) + (30 x 60s)

                                                                               = 12,600 s

The speed of the runner, v = d/t

                                          v = 42,200 / 12,600

                                          v = 3.35 m/s

The runner's average kinetic energy during the run is calculated as;

K.E = ¹/₂mv²

K.E = ¹/₂ × 85 × (3.35)²

K.E = 476.96 J

Therefore, the runner's average kinetic energy during the run is 476.96 J.

5 0
3 years ago
Other questions:
  • When heating water on a stove, a full pan of water takes longer to reach the boiling point than a pan that is half full. why?
    5·1 answer
  • A person wants to determine the spring constant of an exercise stretch cord. He pulls the cord with a force probe that exerts a
    9·2 answers
  • A cart is pulled by a force of 250 N at an angle of 35° above the horizontal. The cart accelerates at 1.4 m/s2. The free-body di
    7·1 answer
  • What I the Wannnsjsusbevdyx
    5·2 answers
  • Two 2.0kg bodies A and B collide The velocities before the collision are U1=15i+30j and U2=-10j+5.0j After the collision V1=-5.0
    5·1 answer
  • Help please 80pnts and brainliest guaranteed
    7·1 answer
  • 3
    13·2 answers
  • A.) If its booster rockets accelerate the space shuttle at 15m/s2, how high will it be one minute after launch?
    6·1 answer
  • What two types of softball games can you play?<br><br> I really need to know
    5·2 answers
  • a car has a mass of 200kg. It is on a hill 1000m high. How much gravitational potential energy does the car have?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!