Answer:
Explanation:
Let m be the mass of cylinder and r be the radius. It is moving with velocity v and angular velocity is ω. Let I be the moment of inertia of the cylinder.
I = 0.5 mr²
Total kinetic energy, T = 0.5 mv² + 0.5 Iω²
T = 0.5 (mv² + 0.5 mr²ω²)
v = rω
So, T = 0.5 (mv² + 0.5 mv²) = 0.75 mv²
Rotational kinetic energy is
R = 0.5 Iω² = 0.5 x 0.5 mr²ω²
R = 0.25 mv²
So, R / T = 0.25 / 0.75 = 1/3
Answer:
<h2>index of refraction = 1.69</h2><h2>percentage error = 10.58%</h2>
Explanation:
According to Snell's law, the ratio of the sine of angle of incidence to the sine of angle of refraction is a constant for a given pair of media. The constant is known as the refractive index.
Mathematically 
i = angle of incidence measured = 63.5°
r = angle of refraction measured = 32°
n = refractive index

The index fraction calculated is approx. 1.69.
If the index of refraction of a clear plastic as listed in the book is 1.89 and the calculated is 1.69, the percentage error will be calculated as thus;
%error = 
%error = 
%error = 
%error = 10.58%
Organisms living in great depths of water bodies like oceans and lakes need to be adapted for two (2) things especially; high water pressure and vision in darkness
The water column above from deep in the water can cause lots of hydrostatic pressure on the organisms’ cells. Also the fact that light cannot penetrate to great depth of water due to diffusion means the organisms must live in darkness.
Explanation:
It has been shown that cells from Piezophile bacteria have a high percentage of fatty acids in their membranes to prevent the cells from compacting solid from the high pressure.
Most of the organisms are also detritivores and use chemosynthesis for the autotrophs because light cannot reach these depths and hence photosynthesis is not possible. Organisms with eye vision are adapted to high wavelength light that can at least reach greater depths before diffusing. Nonetheless natural selection would favour use of sight for most organisms in this benthic region.
Learn More:
For more on adaptation check out;
brainly.com/question/12959056
brainly.com/question/350553
#LearnWithBrainly
The height of the ball above the ground is 38.45 m
First we will calculate the velocity of the ball when it touch the ground by using first equation of motion
v=u+gt
v=0+9.81×2.8
v=27.468 m/s
now the height of the ground can be calculated by the formula
v=√2gh
27.468=√2×9.81×h
h=38.45 m