Answer:
d' = 75.1 cm
Explanation:
It is given that,
The actual depth of a shallow pool is, d = 1 m
We need to find the apparent depth of the water in the pool. Let it is equal to d'.
We know that the refractive index is also defined as the ratio of real depth to the apparent depth. Let the refractive index of water is 1.33. So,

or
d' = 75.1 cm
So, the apparent depth is 75.1 cm.
<span>Sure, Just change the 2 sec. into hrs. Since 1 hour = 3600 sec. then you can divide 2/3600 = 1/1800 hrs.
Distance in kilometers = (Speed in km/hr * time in hrs)
= 50*(1/1800)*1000 in meters
= 27.77 meters</span>
Answer:
72
Explanation:
The displacement of an object can be found from the velocity of the object by integrating the expression for the velocity.
In this problem, the velocity of the sport car is given by the expression

In order to find the expression for the position of the car, we integrate this expression. We find:

where C is an arbitrary constant.
Here we want to find the displacement after 3 seconds. The position at t = 0 is

While the position after t = 3 s is

Therefore, the displacement of the car in 3 seconds is

Maybe push or pull an object with a large amount of mass? you are force a (pushing through object) aka making contact. i hope i helped not good with physics :)
Well it is definitely answer B because when light is on for a long time it heats up a lot.the thermometer obviously went up which means the light bulb had more energy and was hotter than the start of it