First, balance the reaction:
_ KClO₃ ==> _ KCl + _ O₂
As is, there are 3 O's on the left and 2 O's on the right, so there needs to be a 2:3 ratio of KClO₃ to O₂. Then there are 2 K's and 2 Cl's among the reactants, so we have a 1:1 ratio of KClO₃ to KCl :
2 KClO₃ ==> 2 KCl + 3 O₂
Since we start with a known quantity of O₂, let's divide each coefficient by 3.
2/3 KClO₃ ==> 2/3 KCl + O₂
Next, look up the molar masses of each element involved:
• K: 39.0983 g/mol
• Cl: 35.453 g/mol
• O: 15.999 g/mol
Convert 10 g of O₂ to moles:
(10 g) / (31.998 g/mol) ≈ 0.31252 mol
The balanced reaction shows that we need 2/3 mol KClO₃ for every mole of O₂. So to produce 10 g of O₂, we need
(2/3 (mol KClO₃)/(mol O₂)) × (0.31252 mol O₂) ≈ 0.20835 mol KClO₃
KClO₃ has a total molar mass of about 122.549 g/mol. Then the reaction requires a mass of
(0.20835 mol) × (122.549 g/mol) ≈ 25.532 g
of KClO₃.
1) According to the law of conservation of momentum ..
<span>Horiz recoil mom of gun (M x v) = horiz. mon acquired by shell (m x Vh) </span>
<span>1.22^6kg x 5.0 m/s = 7502kg x Vh </span>
<span>Vh = 1.22^6 x 5 / 7502 .. .. Vh = 813 m/s </span>
<span>Barrel velocity V .. .. cos20 = Vh / V .. ..V = 813 /cos20 .. .. ►V = 865 m/s </span>
<span>2) Using the standard range equation .. R = u² sin2θ /g </span>
<span>R = 865² x sin40 / 9.80 .. .. ►R = 49077 m .. (49 km)</span>
Velocity is 6.9 x 1.5 = 10.35 m/s due South
Answer:
The answer is "distance = Vx × t"
Explanation:
To determine how far the golf ball traveled, the formula for velocity can be used, which is
velocity (m/s) = distance (m) ÷ time (s)
Make distance the subject of the formula
distance = velocity × time
Thus, where velocity is Vx and time is t
distance = Vx × t
The unit of the distance will be in meter (m)