Answer:
0.758 V.
Explanation:
Hello!
In this case, case when we include the effect of concentration on an electrochemical cell, we need to consider the Nerst equation at 25 °C:

Whereas n stands for the number of moles of transferred electrons and Q the reaction quotient relating the concentration of the oxidized species over the concentration of the reduced species. In such a way, we can write the undergoing half-reactions in the cell, considering the iron's one is reversed because it has the most positive standard potential so it tends to reduction:

It means that the concentration of the oxidized species is 0.002 M (that of nickel), that of the reduced species is 0.40 M and there are two moles of transferred electrons; therefore, the generated potential turns out:

Beat regards!
360 mg / 1000 => 0.36 g
molar mass => 180 /mol
number of moles:
mass of solute / molar mass
0.36 / 180 => 0.002 moles
Volume solution = 200 mL / 1000 => 0.2 L
M = n / V
M = 0.002 / 0.2
M = 0.01 mol/L
hope this helps!
Well...........thanks for posting anyway.
sorry I don't know just kidding I know just kidding I don't know
Answer:
Yes the two of the answer is True