Answer: A) Inconclusive; you would not know which of the two variables caused the change.
Explanation:
When you set up an experiment, you must make sure that you control the variables such that only one independent variable changes at a time, while all the remainder conditions (the other independent variables) are controlled (fixed).
By observing (measuring) the dependent variable, while only one independent variable changes you can understandhow such independent variable explains (determines) the dependent variable, leading to a conclusion.
Conversely, if two or more independent variables change at a time, then there is no way that you can tell how the output (dependent variable) is related with one or other of the changes of the indipendent variables. You wolud not be able to discriminate (distinguish) the effect of one or other variable, making the experiment inconclusive
I really hope this answer helps you out! It makes my day helping people like you and giving back to the community that has helped me through school! If you could do me a favor, if this helped you and this is the very best answer and you understand that all of my answers are legit and top notch. Please mark as brainliest! Thanks and have a awesome day!
B because it can stabilize
The empirical formula is N₂O₅.
The empirical formula is the <em>simplest whole-number ratio of atoms</em> in a compound.
The ratio of atoms is the same as the ratio of moles, so our job is to calculate the <em>molar ratio of N:O</em>.
I like to summarize the calculations in a table.
<u>Element</u> <u>Moles</u> <u>Ratio¹ </u> <u> ×2² </u> <u>Integers</u>³
N 1.85 1 2 2
O 4.63 2.503 5.005 5
¹To get the molar ratio, you divide each number of moles by the smallest number (1.85).
²Multiply these values by a number (2) that makes the numbers in the ratio close to integers.
³Round off the number in the ratio to integers (2 and 5).
The empirical formula is N₂O₅.
<em>V = 151 mL = 151 cm³</em>
<em>d = 0,789 g/mL = 0,789 g/cm³</em>
--------------------------------------
d = m/V
m = d×V
m = 0,789×151
<u>m = 119,139g</u>
The pressure at the bottom : 19600 N/m²
<h3>Further explanation</h3>
Given
A ground water tank has its height 2m
Required
The pressure at its bottom
Solution
Hydrostatic pressure is the pressure caused by the weight of a liquid.
The weight of a liquid is affected by the force of gravity.
The hydrostatic pressure of a liquid can be formulated:

Ph = hydrostatic pressure (N / m², Pa)
ρ = density of liquid (kg / m³)
g = acceleration due to gravity (m / s²)
h = height / depth of liquid surface (m)
ρ = density of water (kg / m³) = 1000
g = acceleration due to gravity = 9.8 m/ sec²
The pressure
