Answer:
19.3 L
Explanation:
V= n × 22.4
where V is volume and n is moles
First, to find the moles of CO2, divide 38.0 by the molecular weight of CO2 which is 44.01
n= m/ MM
n= 38/ 44.01
n= 0.86344012724
V= 0.86344012724 × 22.4
V= 19.3410588502 L
V= 19.3 L
Answer:
K^+ and NO3^-
Explanation:
In a balanced ionic equation, we usually see the species that react to yield the main product in the reaction.
Consider the reaction;
Pb(NO3)2(aq) +2 KI(aq) -------> PbI2(s) + 2KNO3(aq)
The main product in this reaction is PbI2. Hence the balanced ionic equation is;
Pb^2+(aq) + 2I^-(aq) ------> PbI2(s)
Notice that K^+ and NO3^- did not participate in this reaction. All ions that are part of the molecular equation but do not participate in the ionic reaction equation are called spectator ions. Hence K^+ and NO3^- are spectator ions in this reaction as can be seen clearly above.
Answer:
cesium
Explanation: because it says so online I have no idea what you are talking about so I guess google is correct
<span>9.40x10^19 molecules.
The balanced equation for ammonia is:
N2 + 3H2 ==> 2NH3
So for every 3 moles of hydrogen gas, 2 moles of ammonia is produced. So let's calculate the molar mass of hydrogen and ammonia, starting with the respective atomic weights:
Atomic weight nitrogen = 14.0067
Atomic weight hydrogen = 1.00794
Molar mass H2 = 2 * 1.00794 = 2.01588 g/mol
Molar mass NH3 = 14.0067 + 3 * 1.00794 = 17.03052 g/mol
Moles H2 = 4.72 x 10^-4 g / 2.01588 g/mol = 2.34140921086573x10^-4 mol
Moles NH3 = 2.34140921086573x10^-4 mol * (2/3) = 1.56094x10^-4 mol
Now to convert from moles to molecules, just multiply by Avogadro's number:
1.56094x10^-4 * 6.0221409x10^23 = 9.400197448261x10^19
Rounding to 3 significant figures gives 9.40x10^19 molecules.</span>
Answer:
M = 20.5 g/mol
Explanation:
Given data:
Volume of gas = 1.20 L
Mass of gas = 1.10 g
Temperature and pressure = standard
Solution:
First of all we will calculate the density.
Formula:
d = mass/ volume
d = 1.10 g/ 1.20 L
d = 0.92 g/L
Now we will calculate the molar mass.
d = PM/RT
0.92 g/L = 1 atm × M / 0.0821 atm.L/mol.K ×273.15 K
M = 0.92 g/L × 0.0821 atm.L/mol.K ×273.15 K / 1 atm
M = 20.5 g/mol