Answer:
a. P
b. Br
c. Ag
d. Na
Explanation:
The Periodic Table says so
Answer:
is the volume of the air in the balloon after it is heated.
Explanation:
To calculate the final temperature of the system, we use the equation given by Charles' Law. This law states that volume of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,
(at constant pressure)
where,
are the initial volume and temperature of the gas.
are the final volume and temperature of the gas.
We are given:

Putting values in above equation, we get:


is the volume of the air in the balloon after it is heated.
Similarly, for one gram atomic weight of silicon with atomic weight of 28 grams, one mole of silicon still contains 6.022 × 1023 silicon atoms.Answer:
Explanation:
hope it helps
Answer: 3.4 atm
Explanation:
Given that:
Volume of gas V = 5L
(since 1 liter = 1dm3
5L = 5dm3)
Temperature T = 0°C
Convert Celsius to Kelvin
(0°C + 273 = 273K)
Pressure P = ?
Number of moles of gas n = 0.75 moles
Note that Molar gas constant R is a constant with a value of 0.0821 atm dm3 K-1 mol-1
Then, apply ideal gas equation
pV = nRT
p x 5dm3 = 0.75 moles x (0.0821 atm dm3 K-1 mol-1 x 273K)
p x 5dm3 = 16.8 atm dm3
p = (16.8 atm dm3 / 5dm3)
p = 3.4 atm
Thus, a pressure of 3.4 atm is exerted by the gas.