It states that the total entropy of an isolated system can never decrease over time
Answer:
Because the velocity v (As a Vector ) is going opposite direction ( -X axis ) .
It can help with measurements and when you want to add measurements to a cylinder or a beaker so ya
Answer:
Δω = -5.4 rad/s
αav = -3.6 rad/s²
Explanation:
<u>Given</u>:
Initial angular velocity = ωi = 2.70 rad/s
Final angular velocity = ωf = -2.70 rad/s (negative sign is
due to the movement in opposite direction)
Change in time period = Δt = 1.50 s
<u>Required</u>:
Change in angular velocity = Δω = ?
Average angular acceleration = αav = ?
<u>Solution</u>:
<u>Angular velocity (Δω):</u>
Δω = ωf - ωi
Δω = -2.70 - 2.70
Δω = -5.4 rad/s.
<u> Average angular acceleration (αav):</u>
αav = Δω/Δt
αav = -5.4/1.50
αav = -3.6 rad/s²
Since, the angular velocity is decreasing from 2.70 rad/s (in counter clockwise direction) to rest and then to -2.70 rad/s (in clockwise direction) so, the change in angular velocity is negative.