<h3>
Answer:</h3>
0.387 J/g°C
<h3>
Explanation:</h3>
- To calculate the amount of heat absorbed or released by a substance we need to know its mass, change in temperature and its specific heat capacity.
- Then to get quantity of heat absorbed or lost we multiply mass by specific heat capacity and change in temperature.
- That is, Q = mcΔT
in our question we are given;
Mass of copper, m as 95.4 g
Initial temperature = 25 °C
Final temperature = 48 °C
Thus, change in temperature, ΔT = 23°C
Quantity of heat absorbed, Q as 849 J
We are required to calculate the specific heat capacity of copper
Rearranging the formula we get
c = Q ÷ mΔT
Therefore,
Specific heat capacity, c = 849 J ÷ (95.4 g × 23°C)
= 0.3869 J/g°C
= 0.387 J/g°C
Therefore, the specific heat capacity of copper is 0.387 J/g°C
Moral relativism considers that something, such as abortion, can only be right or wrong in relation to one or another moral framework. Morality is then a human invention. The relevant moral principles are thus nothing but conventions that result from a process of tacit moral bargaining through which some groups can exert pressure on others in an effort to change the current moral conventions. This encourages the view that "anything goes" and that morality is just a matter of opinion. Relativism makes dialogue pointless, assuming that there is no binding truth or that partners in the dialogue are saying the same thing in different ways.
Answer:
You can make the ramp really steep and hold the marble at the top of it
Explanation:
Oil, petroleum
/////////////////////
Answer:
The number of moles of benzaldehyde = 0.0253 moles
Explanation:
The molecular formula of benzaldehyde is C₇H₆O
Its molecular mass is calculated from the atomic masses of the constituent atoms.
C = 12.0 g: H = 1.0 g; O = 16.0 g
Molecular mass = ( 12 * 7) + (1 * 6) + (16 * 1) = 106.0 g/mol
Number of moles of substance = mass of substance/ molar mass of the substance
mass of benzaldehyde = 2.68; molar mass = 106.0 g/mol
Number of moles of benzaldehyde = 2.68 g/ 106 g/mol = 0.0253 moles
Therefore, the number of moles of benzaldehyde = 0.0253 moles