We are given function f(x) = 25x^2 -2.
g(x) is a vertical stretch of f(x) by a factor of 2.
We know, the transformation rule
y= k f(x), vertical stretch by a factor k. For k>0.
Because function f(x) is being vertical stretched by a factor of 2. So, we need to multiply f(x) function by 2.
Therefore, g(x) = 2 f(x) = 2*(25x^2-2).
Therefore, g(x) = 2*(25x^2-2) or g(x) = 50x^2-4.
Answer:
<u>$10.75</u>
<u />
Step-by-step explanation:
First, tan(<em>θ</em>) = sin(<em>θ</em>) / cos(<em>θ</em>), so if cos(<em>θ</em>) = 3/5 > 0 and tan(<em>θ</em>) < 0, then it follows that sin(<em>θ</em>) < 0.
Recall the Pythagorean identity:
sin²(<em>θ</em>) + cos²(<em>θ</em>) = 1
Then
sin(<em>θ</em>) = -√(1 - cos²(<em>θ</em>)) = -4/5
and so
tan(<em>θ</em>) = (-4/5) / (3/5) = -4/3
The remaining trig ratios are just reciprocals of the ones found already:
sec(<em>θ</em>) = 1/cos(<em>θ</em>) = 5/3
csc(<em>θ</em>) = 1/sin(<em>θ</em>) = -5/4
cot(<em>θ</em>) = 1/tan(<em>θ</em>) = -3/4