Answer:
C, weathering by the water.
Explanation:
While in the river, it scraps againsts other rocks and things, which causes it to change shape. For example be smoother and round.
I am pretty sure it’s A
The cue exerts force onto the white ball which pushes the blue ball into the direction of the hole.
Answer:
0.6kg
Explanation:
the unknown here is the mass of the second block
applying the law of the conservation of momentum
m₁v₁ + m₂v₂ = (m₁ + m₂) v₃
where m₁=mass of first block=2.2kg
m₂=mass of colliding block= ?
v₁= velocity of first block=1.2m/s
v₂=velocity of colliding block=4.0m/s
v₃= final velocity of combined block=1.8m/s
applying the formula above
(2.2 × 1.2) + (m₂ × 4) = (2.2 + m₂) × 1.8
2.64 + 4m₂ = 3.96 + 1.8m₂
collecting like terms
4m₂ - 1.8m₂ = 3.96 - 2.64
2.2m₂=1.32
divide both sides by 2.2
m₂= 0.6kg
Answer:
14 m/s
Explanation:
u = 0, h = 10 m, g = 9.8 m/s^2
Use third equation of motion
v^2 = u^2 + 2 g h
Here, v be the velocity of ball as it just strikes with the ground
v^2 = 0 + 2 x 9.8 x 10
v^2 = 196
v = 14 m/s
Answer:
W ≅ 292.97 J
Explanation:
1)What is the work done by tension before the block goes up the incline? (On the horizontal surface.)
Workdone by the tension before the block goes up the incline on the horizontal surface can be calculated using the expression;
W = (Fcosθ)d
Given that:
Tension of the force = 62 N
angle of incline θ = 34°
distance d =5.7 m.
Then;
W = 62 × cos(34) × 5.7
W = 353.4 cos(34)
W = 353.4 × 0.8290
W = 292.9686 J
W ≅ 292.97 J
Hence, the work done by tension before the block goes up the incline = 292.97 J