The most accurate answer to that process is definitely precision. The Rotary encoder is an electro-mechanical device that converts the angular position or motion of a shaft or axle to analog or digital output signals. The efficiency of these devices is subject to the position and angle of the axis in front of the encoder.
Most cars use reduction systems in their gearboxes that convert a certain signal input into an output. Mechanically for example, a 20: 1 reduction box already infers that if there is a revolution in the input at the output there are 20. That same transferred to the encoder pulses would imply greater precision.
For example a decoder with 50 holes would have to read 1000 pulses (50 * 20) which is basically a degree of accuracy of 0.36 degrees. In this way it is possible to conclude that if the assembly of the encoder is carried out next to the motor and not at the output, it can be provided with greater precision at the time of reading.
Answer:
, 
Explanation:
Since there is no information related to volume flow to and from turbine, let is assume that volume flow at inlet equals to
. Turbine is a steady-flow system modelled by using Principle of Mass Conservation and First Law of Thermodynamics:
Principle of Mass Conservation

First Law of Thermodynamics

This 2 x 2 System can be reduced into one equation as follows:

The water goes to the turbine as Superheated steam and goes out as saturated vapor or a liquid-vapor mix. Specific volume and specific enthalpy at inflow are required to determine specific enthalpy at outflow and mass flow rate, respectively. Property tables are a practical form to get information:
Inflow (Superheated Steam)

The mass flow rate can be calculated by using this expression:


Afterwards, the specific enthalpy at outflow is determined by isolating it from energy balance:


The enthalpy rate at outflow is:


Answer:
I think reduce your following distance
You are going to have to be more specific than that, perhaps add a picture next time ? Unfortunately, this question can’t be answered.