Answer:
5 m/s2, left
Explanation:
We can solve the problem by applying Newton's second law of motion, which states that:

where:
is the net force acting on an object
m is the mass of the object
a is its acceleration
In this problem, we have:
(to the left) is the net force on the object
m = 2.0 kg is the mass
So, the acceleration is:
in the same direction as the force (left).
Decreasing the trains velocity will DECREASE the kinetic energy
Answer:
the net energy Gained per hour equals 30Kcal/h
Answer:
Frquency=3,994Hz
Explanation:
Tension =967N
Density of string (μ)=0.023g/cm
Length of the stretched spring=308cm
Fundamental frequency for nth harmonic :
Fn=n/2L(√T/μ)
Substituting the given values to find the frequency :
f1=1/2(308cm) *(0.01m/1cm)[(√967N)/(0.023g/cm)(0.1kg)/(0.1kg/m)/(1g/cm)]
=6.16m[(√967N)/0.0023kg/m)]
=3,994.20Hz
Approximately,
The frequency will be =3,994Hz