1 kg/L -------------- 0.001 kg/mL
22.4 kg/L --------- ??
22.4 x 0.001 / 1 => 0.0224 kg/mL
The wavelength of the photon required to excite this molecule from its ground state, to its first excited state is 1240 nm.
This is given by the equation:
wavelength = hc/(E_homo - E_lumo)
where h is Planck's constant =6.626070 * 10^-34 J.m , c is the speed of light = 3.0 x 10^8 m/s^2, and E_homo and E_lumo are the energies of the highest occupied molecular orbital and the lowest unoccupied molecular orbital, respectively.
In this particular case, the wavelength of the required photon would be:
wavelength = hc/(-2.42 hartree - 0.65 hartree)
= 6.626070 * 10^-34 X 3.0 x 10^8 / (-3.07)
= 1240 nm
Hence , The wavelength of the photon required to excite this molecule from its ground state, to its first excited state is 1240 nm.
Learn more about wavelength at : brainly.com/question/13533093
#SPJ4
Answer:
Detail is given below
Explanation:
Atomic radii trend along group:
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased.
As the size of atom increases the ionization energy from top to bottom also decreases because it becomes easier to remove the electron because of less nuclear attraction and as more electrons are added the outer electrons becomes more shielded and away from nucleus.
In A we can see that there is one positive charge and force of attraction is 2.30×10⁻⁸ N and distance is 0.10 nm
In B we can see that negative charge is further away from nucleus because of greater distance thus force of attraction will be less. 0.58×10⁻⁸ N
In C this distance further increases and force also goes in decreasing 0.26×10⁻⁸ N.
When Na3po4 dissolves in water to produce an electrolytic solution. The osmolarity of a 2. 0 × 10-3 m Na3po4 solution is 0.008osmol/L.
Osmolarity is defined as the number of osmoles of solute particles per unit volume of the solution.
In other words osmolarity is the multiple if molarity
Osmolarity = i× molarity
Here i represents the van't Hoff factor,
⇒ 
3 Moles of
+ 1 mole
= 4
The number of moles of particles of solute produced in solution are actually called osmoles.
As a result, the van't Hoff factor will be equal to
i=4 Moles ions produced (osmoles) 1mole
.dissolved =4
Since we know that,
= 
Osmolarity =
= 
Thus, the Osmolarity of given solution is 0.008 osmol/L.
learn more about Osmolarity:
brainly.com/question/13597129
#SPJ4