Answer:
Less
Explanation:
Since [Cu(NH3)4]2+ and [Cu(H2O)6]2+ are Octahedral Complexes the transitions between d-levels explain the majority of the absorbances seen in those chemical compounds. The difference in energy between d-levels is known as ΔOh (ligand-field splitting parameter) and it depends on several factors:
- The nature of the ligand: A spectrochemical series is a list of ligands ordered on ligand strength. With a higher strength the ΔOh will be higher and thus it requires a higher energy light to make the transition.
- The oxidation state of the metal: Higher oxidation states will strength the ΔOh because of the higher electrostatic attraction between the metal and the ligand
A partial spectrochemical series listing of ligands from small Δ to large Δ:
I− < Br− < S2− < Cl− < N3− < F−< NCO− < OH− < C2O42− < H2O < CH3CN < NH3 < NO2− < PPh3 < CN− < CO
Then NH3 makes the ΔOh higher and it requires a higher energy light to make the transition, which means a shorter wavelength.
Mass is measured in kilograms.
Group 7A are halogens
If you look at a periodic table, these elements include F, Cl, Br, I, and At. Some well known salts are KCl and NaCl (better known as table salt!)
The answer to this problem is quite simple, it’s 9