Answer:
The correct answer is 4.16 grams.
Explanation:
Based on the given information, the concentration of KCl solution is 16 % m/v, which means that 100 ml of the solution will contain 16 grams of KCl.
The molarity of the solution can be determined by using the formula,
M = weight/molecular mass × 1000/Volume
The molecular mass of KCl is 74.6 grams per mole.
M = 16/74.6 × 1000/100
M = 16/74.6
M = 2.14 M
Now the weight of KCl present in the solution of 26 ml will be,
2.14 = Wt./74.6 × 1000 /26
Wt. = 4.16 grams
Answer:
7.07
Explanation:
HA = weak acid = 0.053
A+ = conjugate base = 0.045
Ka = 7.2x10^-8
Ka = [H+][A-]/HA
7 2x10^-8 = [H+][0.045]/0.053
[H+] = 7.2x10^-8 x 0.053/0.045
= 8.48x10^-8
PH = -log[H+]
= -log[8.48x10^-8]
PH = -[login.48 + log10^-8]
PH = -0.928 - (-8)log10
= 7.07
Answer:
220.42098 amu
Explanation:
(220 .9 X .7422) + (220 X .0.1278) + (218.1 X 0.13) = 220.42098 amu
These are weighted averages.
So, we will take mass of one and multiply by abundance percentage that is provided and add them together.
In order to calculate the average atomic mass, we have to convert the percentages of abundance to decimals. So, you get
(220 .9 X .7422) + (220 X .0.1278) + (218.1 X 0.13) = 220.42098 amu
Single-replacement reaction
B.
As you can see both NO and NH3 have 4 moles therefore it is 4:4 between the molecules or in other words a 1:1 ratio in simplest forms