1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vitfil [10]
3 years ago
9

Earth is about 150 million kilometers from the Sun, and the apparent brightness of the Sun in our sky is about 1300 watts/m2. Us

e these two facts and the inverse square law for light to answer the questions.
Physics
1 answer:
vova2212 [387]3 years ago
6 0

Answer:

various parts have been answered

Explanation:

Inverse square for light is I_1r_1^2=I_2r_2^2

initial distance from sun to earth isr_1=150\times10^6

and intensity or apparent brightness of sun is I_1=1300\ W/m^2

a)

If distance from sun to earth is r_2=r_1/2=\frac{150\times10^6}{2}

then apparent brightness is  I_2=\frac{I_1r_1^2}{r_2^2}=\frac{1300\times r_1^2}{(r_1/2)^2}=5200

b)

If distance from sun to earth is  r_2=2r_1

then apparent brightness is  I_2=\frac{I_1r_1^2}{r_2^2}=\frac{1300\times r_1^2}{(2r_1)^2}=325\,W/m^2

c)

If distance from sun to earth is  r_2=7r_1

then apparent brightness is

I_2=\frac{I_1r_1^2}{r_2^2}=\frac{1300\times r_1^2}{(7r_1)^2}=26.5\,W/m^2

You might be interested in
The energy associated with the random motion of molecules or atoms within a substance is
Yuliya22 [10]

Answer:

C

technically B too but youre teachers not that smart so there you go

6 0
3 years ago
A car that brakes suddenly comes to a screeching halt. Is the sound energy produced in this conversion a useful form of energy?
Nezavi [6.7K]

Answer:

No, the sound produced by screeching brakes is not a useful form of energy, because it does not contribute to stopping the car.

7 0
2 years ago
Brainliest if right
mixas84 [53]
They traveling at -0.37/ms^
3 0
2 years ago
A man is standing on a weighing machine on a ship which is bobbing up and down with simple harmonic motion of period T=15.0s.Ass
STALIN [3.7K]

Well, first of all, one who is sufficiently educated to deal with solving
this exercise is also sufficiently well informed to know that a weighing
machine, or "scale", should not be calibrated in units of "kg" ... a unit
of mass, not force.  We know that the man's mass doesn't change,
and the spectre of a readout in kg that is oscillating is totally bogus.

If the mass of the man standing on the weighing machine is 60kg, then
on level, dry land on Earth, or on the deck of a ship in calm seas on Earth,
the weighing machine will display his weight as  588 newtons  or as 
132.3 pounds.  That's also the reading as the deck of the ship executes
simple harmonic motion, at the points where the vertical acceleration is zero.

If the deck of the ship is bobbing vertically in simple harmonic motion with
amplitude of M and period of 15 sec, then its vertical position is 

                                     y(t) = y₀ + M sin(2π t/15) .

The vertical speed of the deck is     y'(t) = M (2π/15) cos(2π t/15)

and its vertical acceleration is          y''(t) = - (2πM/15) (2π/15) sin(2π t/15)

                                                                = - (4 π² M / 15²)  sin(2π t/15)

                                                                = - 0.1755 M sin(2π t/15) .

There's the important number ... the  0.1755 M.
That's the peak acceleration.
From here, the problem is a piece-o-cake.

The net vertical force on the intrepid sailor ... the guy standing on the
bathroom scale out on the deck of the ship that's "bobbing" on the
high seas ... is (the force of gravity) + (the force causing him to 'bob'
harmonically with peak acceleration of  0.1755 x amplitude).

At the instant of peak acceleration, the weighing machine thinks that
the load upon it is a mass of  65kg, when in reality it's only  60kg.
The weight of 60kg = 588 newtons.
The weight of 65kg = 637 newtons.
The scale has to push on him with an extra (637 - 588) = 49 newtons
in order to accelerate him faster than gravity.

Now I'm going to wave my hands in the air a bit:

Apparent weight = (apparent mass) x (real acceleration of gravity)

(Apparent mass) = (65/60) = 1.08333 x real mass.

Apparent 'gravity' = 1.08333 x real acceleration of gravity.

The increase ... the 0.08333 ... is the 'extra' acceleration that's due to
the bobbing of the deck.

                        0.08333 G  =  0.1755 M

The 'M' is what we need to find.

Divide each side by  0.1755 :          M = (0.08333 / 0.1755) G

'G' = 9.0 m/s²
                                       M = (0.08333 / 0.1755) (9.8) =  4.65 meters .

That result fills me with an overwhelming sense of no-confidence.
But I'm in my office, supposedly working, so I must leave it to others
to analyze my work and point out its many flaws.
In any case, my conscience is clear ... I do feel that I've put in a good
5-points-worth of work on this problem, even if the answer is wrong .

8 0
3 years ago
an electromagnetic wave propagates in a vacuum in the x-direction. In what direction does the electric field oscilate
sweet [91]

Answer:

<em>The electric field  can either oscillates in the z-direction, or the y-direction, but must oscillate in a direction perpendicular to the direction of propagation, and the direction of oscillation of the magnetic field.</em>

Explanation:

Electromagnetic waves are waves that have an oscillating magnetic and electric field, that oscillates perpendicularly to one another. Electromagnetic waves are propagated in a direction perpendicular to both the electric and the magnetic field. If the wave is propagated in the x-direction, then the electric field can either oscillate in the y-direction, or the z-direction but must oscillate perpendicularly to both the the direction of oscillation of the magnetic field, and the direction of propagation of the wave.

5 0
3 years ago
Other questions:
  • The orbitals can be found by counting down the _____.
    5·1 answer
  • Jack pulls a sled across a level field by exerting a force of 110 n at an angle of 30 with the ground. what are the parallel and
    7·2 answers
  • The weight of a box having a mass of 100 kg is blank N
    11·1 answer
  • A tortoise and hare start from rest and have a race. As the race begins, both accelerate forward. The hare accelerates uniformly
    7·1 answer
  • What is gravitational potential energy?
    10·1 answer
  • A person raises a box with a weight of 50 newtons by 0.5 meter. How much work does the person do in this action?(1 point)
    12·1 answer
  • A pitcher throws a 0.143-kg baseball toward the batter so that it crosses home plate horizontally and has a speed of 42 m/s just
    12·1 answer
  • Which of the following has kinetic energy? (1 point)
    8·1 answer
  • Where is the location potential energy is converted to kinetic energy?<br> Please answer asap!!!!!
    10·1 answer
  • Two rocks, a and b, are thrown horizontally from the top of a cliff. rock a has an initial speed of 10 meters per second and roc
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!