Fats are large molecules made of two types of molecules, glycerol and some type of fatty acid.
Answer: Flammability is a material's ability to burn in the presence of oxygen.
Explanation: Chemical properties can be observed only when the substance changes into one or more different substances through chemical reactions or transformations. One of the chemical properties is flammability.
Flammability is a material's ability to burn in the presence of oxygen.
Remember, oxygen doesn't burn. Precisely flammable substances obtain substances that burn. Oxygen remains an oxidizing agent, which means it supports the combustion process. Oxygen causes other objects to catch fire at low temperatures and burns hotter and faster. But oxygen itself does not burn. Consequently, if you at present deliver fuel and fire, adding oxygen will provide the fire.
Carbon dioxide is the result of combustion. An example can be seen in firewood in a fireplace. One of the chemical properties of carbon-based wood is having the ability to burn. Chemically the wood turns into carbon dioxide when it burns and leaves a residue of ash. Furthermore, this ash residue cannot be turned back into the wood. Chemical changes result in new substances.
Consider an example of a combustion reaction to methane gas:
Our balanced equation for methane combustion implies that every one CH₄ molecule reacts with two O₂ molecules. The product of combustion is one carbon dioxide molecule and two steam or water vapor molecules.
You have to add a photo to we can understand - Yuno Gasai
Unsaturation (IHD) 2 hydrogen Needed
IHD = [(2n+2) -H]/2
(H: X=1, N=-1, O= zero)
Unsaturation:
Double bonds = 1
Rings = 1
Triple Bonds = 2
The degrees of unsaturation in a molecule are additive — a
molecule with one double bond has one degree of unsaturation, a molecule with
two double bonds has two degrees of unsaturation, and so forth.