Answer: The correct answer is in chemical bonds
Explanation:
When coal is burnt, these components burn and release energy. The energy released is by the chemical reaction between the constituents and oxygen
Pb(NO3)2 (aq) + 2 NaI (aq) --> PbI2 (s) + 2 NaNO3 (aq)
Starting with with 200.0 grams of Pb(NO3)2 and 120.0 grams of NaI:
A. What is the limiting reagent?
B. How many grams of PbI2 is theoretically formed?
C. How many grams of the excess reactant remains?
D. If 48 grams of NaNO3 actually formed in the reaction, what is the percent yield of this reaction?
The question is incomplete, here is the complete question:
Carbon tetrachloride reacts at high temperatures with oxygen to produce two toxic gases, phosgene and chlorine.
at 1,000 K
Calculate Kc for the reaction 
<u>Answer:</u> The value of
for the final reaction is 
<u>Explanation:</u>
The given chemical equations follows:

We need to calculate the equilibrium constant for the equation, which is:

As, the final reaction is the twice of the initial equation. So, the equilibrium constant for the final reaction will be the square of the initial equilibrium constant.
The value of equilibrium constant for net reaction is:

We are given:

Putting values in above equation, we get:

Hence, the value of
for the final reaction is 
Answer:
0.453 moles
Explanation:
The balanced equation for the reaction is:
2Fe(s) + 3O2(g) ==> 2Fe2O3
From the equation, mass of O2 involved = 16 x 2 x 3 = 96g
mass of Fe2O3 involved = [(2x26) + 3 x 16] x 2
= 100g
Therefore 96g of O2 produced 100g of Fe2O3
32.2g of O2 Will produce 100x32.2/96
= 33.54g of Fe2O3
Converting it to mole using number of mole = mass/molar mass
but molar mass of Fe2O3 = 26 + (16 X 3)
= 74g/mole
Therefore number of mole of 33.54g of Fe2O3 = 33.54/74
= 0.453 moles