Answer:

Explanation:
Assuming that all caculations are at normal pressure and -1.72°C :

Where
is the number of moles of hydrogen
is the mass of hydrogen
is the density of hydrogen
Answer: 26.5 mm Hg
Explanation:
The vapor pressure is determined by Clausius Clapeyron equation:

where,
= initial pressure at
= ?
= final pressure at
= 100 mm Hg
= enthalpy of vaporisation = 28.0 kJ/mol =28000 J/mol
R = gas constant = 8.314 J/mole.K
= initial temperature = 
= final temperature =
Now put all the given values in this formula, we get
![\log (\frac{P_1}{100})=\frac{28000}{2.303\times 8.314J/mole.K}[\frac{1}{299.5}-\frac{1}{267.9}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BP_1%7D%7B100%7D%29%3D%5Cfrac%7B28000%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B299.5%7D-%5Cfrac%7B1%7D%7B267.9%7D%5D)



Thus the vapor pressure of
in mmHg at 26.5 ∘C is 26.5