Answer:
The final volume of the balloon is = 28.11 L
Explanation:
Initial pressure = 1.03 atm = 104.325 K pa
Initial temperature = 26 °c = 299 K
Initial volume = 22.4 L
Final temperature = 22 °c = 295 K
Final pressure = 0.81 atm = 82 K pa
We know that
Put all the values in above formula we get
= 28.11 L
This is the final volume of the balloon.
The strongest intermolecular forces are in ion-ion bonds which happen when a metal bonds to another metal. 2. The next strongest forces are ion-dipole bonds which happen when metals bond to nonmetals. 3.
Answer:
Explanation:
Glucose + ATP → glucose 6-phosphate + ADP The equilibrium constant, Keq, is 7.8 x 102.
In the living E. coli cells,
[ATP] = 7.9 mM;
[ADP] = 1.04 mM,
[glucose] = 2 mM,
[glucose 6-phosphate] = 1 mM.
Determine if the reaction is at equilibrium. If the reaction is not at equilibrium, determine which side the reaction favors in living E. coli cells.
The reaction is given as
Glucose + ATP → glucose 6-phosphate + ADP
Now reaction quotient for given equation above is
so,
⇒ following this criteria the reaction will go towards the right direction ( that is forward reaction is favorable until q = Keq
The alkali metals are so reactive that they are never found in nature in elemental form. Although some of their ores are abundant, isolating them from their ores is somewhat difficult. For these reasons, the group 1 elements were unknown until the early 19th century, when Sir Humphry Davy first prepared sodium (Na) and potassium (K) by passing an electric current through molten alkalis. (The ashes produced by the combustion of wood are largely composed of potassium and sodium carbonate.) Lithium (Li) was discovered 10 years later when the Swedish chemist Johan Arfwedson was studying the composition of a new Brazilian mineral. Cesium (Cs) and rubidium (Rb) were not discovered until the 1860s, when Robert Bunsen conducted a systematic search for new elements. Known to chemistry students as the inventor of the Bunsen burner, Bunsen’s spectroscopic studies of ores showed sky blue and deep red emission lines that he attributed to two new elements, Cs and Rb, respectively. Francium (Fr) is found in only trace amounts in nature, so our knowledge of its chemistry is limited. All the isotopes of Fr have very short half-lives, in contrast to the other elements in group 1.