No, Matter cannot be created nor deastroyed.
Answer:
1223.38 mmHg
Explanation:
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 
Also,
Moles = mass (m) / Molar mass (M)
Density (d) = Mass (m) / Volume (V)
So, the ideal gas equation can be written as:

Given that:-
d = 1.80 g/L
Temperature = 32 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (32 + 273.15) K = 305.15 K
Molar mass of nitrogen gas = 28 g/mol
Applying the equation as:
P × 28 g/mol = 1.80 g/L × 62.3637 L.mmHg/K.mol × 305.15 K
⇒P = 1223.38 mmHg
<u>1223.38 mmHg must be the pressure of the nitrogen gas.</u>
Mole is mass (g) / Molar mass (mole/gram)
So to find mass in gram multiply the no.mole by Molar mass
Answer: <span>The molecules of a substance which must have the
<u>a</u></span>
<u>bility to move past one another</u> are said to be flexible.
Explanation: Those substances are said to be flexible which can be
bent without breaking. There are many substances which are
hard in nature but still can be bent. The hardness of such materials is due to
strong interactions between the molecules and the flexibility comes due to their
amorphous backbone. Therefore, greater the
crystalline level of macromolecules lesser is the flexibility and greater the amorphous character greater is the flexibility and vice versa. Also, the flexibility of polymers is increased by adding
plastisizers in it. Plastisizers make the hard polymers flexible by breaking the crosslinkers and enabling the macromolecules to move past one another.
Explanation:
1. Elements are substances made of the same kind of atoms, unlike compounds that are combination for different kinds of atoms. The elements in the reaction therefore are;
Cl and O₃
2. Yes, the equation is balanced. There is the same number of each element on either side of the equation. One (1) CL and three (3) O atoms.
3. Ozone is reduced. Other the other hand, Cl is oxidized. Remember a reduction reaction may involve the loss of one or more oxygen atoms or the acceptance of electrons. This occurs for O₃ which is reduced to O₂.
4. The equation complies with the conservation of matter as in the first law of thermodynamics. The number of atoms for each element on the other side of the equation remains the same. This means no matter(which also translated to energy) has been created or destroyed in the process.