Answer:
dtds the temperature of a gas station and the problem is that the volume of a gas station and the temperature and pressure on the volume of emails of the
Explanation:
dyrs the temperature and regards Eric a system generated mail from your intra day of the temperature of the volume and weight and congratulationsgdaftsdttddswhdhj. v of the temperature and the problem please let me to do to get the temperature of a gas station and congratulations Dr suite and I will be in the temperature the temperature of the volume and weight and submit report for the temperature and pressure on the volume and congratulations Dr suite and I'mhsdf to gh
Answer: There are 0.0637 moles present in 85.0 mL of 0.750 M KOH.
Explanation:
Given: Volume = 85.0 mL (1 mL = 0.001 L) = 0.085 L
Molarity = 0.750 M
It is known that molarity is the number of moles of solute present in liter of a solution.
Therefore, moles present in given solution are calculated as follows.

Thus, we can conclude that there are 0.0637 moles present in 85.0 mL of 0.750 M KOH.
Answer:
Rate = k . [B]² . [C]
Explanation:
The dependence of the reaction rate on the concentration of the reactants is given by the reaction order of each one, as shown in the rate equation.
![Rate=k.[A]^{x} .[B]^{y} .[C]^{z}](https://tex.z-dn.net/?f=Rate%3Dk.%5BA%5D%5E%7Bx%7D%20.%5BB%5D%5E%7By%7D%20.%5BC%5D%5E%7Bz%7D)
where,
k is the rate constant
x, y, z are the reaction orders.
- <em>The rate of reaction is not affected by changing the concentration of species A.</em> This means that the reaction order for A is x = 0 since when its concentration changes, the rate stays the same.
- <em>Leaving all other factors identical, doubling the concentration of species B increases the rate by a factor of 4.</em> This means that the reaction order for B is y = 2, so when the concentration is doubled, the new rate is 2² = 4 times the initial rate.
- The rate of the reaction is linearly dependent on the concentration of C. This means that the reaction order for C is z = 1, that is, a linear dependence.
All in all, the rate equation is:
Rate = k . [B]² . [C]
Answer:
4.64 grams.
Explanation:
without stating a desired unit, stating the answer in any unit is acceptable. So you can use grams and the problem is done for you
To determine the amount of a substance in units of moles from units of grams, we need to determine the molar mass of the substance. <span>The </span>molar mass<span> is the </span>mass<span> of a given chemical element or chemical compound (g) divided by the amount of substance (mol). For CuF2, the molar mass </span><span>101.543 g/mol. We calculate as follows:
100.0 g CuF2 ( 1 mol / 101.543 g) = 0.98 mol CuF2</span>