Answer:
E. Student 1 is correct, because as θ is increased, h is the same.
Explanation:
Here we have the object of a certain mass falling under gravity so the force acting on the it will depend on mass of the object and the acceleration due to gravity.
Mathematically:

As we know that the work done is evaluated as the force applied on a body and the displacement of the body in the direction of the force.
And for work we have:

where:
displacement of the object
angle between the force and displacement vectors
Given that the height of the object is same in each trail of falling object under the gravity be it a free-fall or the incline plane.
- In case of free-fall the angle between the force is and the displacement is zero.
- In case when the body moves along the inclined plane the force applied by the gravity is same because it depends upon the mass of the object. And the net displacement in the direction of the gravitational force is the height of the object which is constant in both the cases.
So, the work done by the gravitational force is same in the two cases.
C explanation: There are many examples of fossils found on separate continents and nowhere else, suggesting the continents were once joined. If Continental Drift had not occurred, the alternative explanations would be: They swam to the other continent/s in breeding pairs to establish a second population. ...
For pressurized water reactors the coolant is not permitted to boil in the core of the PRW, however the coolant in boiling water reactors is permitted to do so in the core of BWR. Pressurized water reactors have an indirect cycle. Whereas, the boiling water reactors go through a direct cycle. Both are light water reactors.
Fossil fuels are non-renewable resources and create greenhouse gases. While cheaper now to burn fossil fuels, within fifty years we will run out and have to turn to other sources of energy. Hope this helps!!!
Answer:
Technician A says that this is the normal operation of the ETC self -test is the correct answer.
Explanation:
An engine control unit (ECU), also widely referred to as an engine control module (ECM), is a type of electronic control device that controls an internal combustion engine with a series of actuators to ensure maximum engine performance.
It achieves so by reading values from a multitude of sensors within the engine bay, translating data using multidimensional feedback maps (the so-called lookup tables) and modifying the actuators.
Mechanically fixed and dynamically regulated by mechanical and pneumatic means, air-fuel combination, ignition time, and idle speed were before ECUs.
As soon as the system gets battery voltage, after ignition is turned, the efi computer makes a self-test of all the actuators and sensors, included the ETC.