The formula for true strain after derivation from basic terms is; ε_t = In(1 + ε_e)
<h3>How to derive the expression for True Strain?</h3>
Formula for Engineering Stress is;
σ_e = Load/Area
Formula for true stress is;
σ_t = Force/Instantaneous Area
Formula for Engineering Strain is;
ε_e = ΔL/L₀
Formula for true strain is;
dε_t = dL/L
Total true strain is gotten from;
ε_t = ∫(dL/L) between boundaries of L_f and L_o
When we integrate between those boundaries, we have;
ε_t = In[(L₀ + ΔL)/L₀
⇒ ε_t = In[(1+ ΔL/L₀)
⇒ ε_t = In(1 + ε_e)
Read more about True Strain at; brainly.com/question/20717759
#SPJ1
Answer: To detect and correct errors, additional bits are added to the data bits at the time of transmission. The additional bits are called parity bits. They allow detection or correction of errors. The data bits along with the parity bits form a code word.
Explanation:
Answer: The actual tracking weight of a stereo cartridge that is set to track at 3 g on a particular changer can be regarded as a continuous rv X with the following
Explanation:
Answer:
Explanation:
f = 50.0 Hz, L = 0.650 H, π = 3.14
C = 4.80 μF, R = 301 Ω resistor. V = 120volts
XL = wL = 2πfL
= 2×3.14×50* 0.650
= 204.1 Ohm
Xc= 1/wC
Xc = 1/2πfC
Xc = 1/2×3.14×50×4.80μF
= 1/0.0015072
= 663.48Ohms
1. Total impedance, Z = sqrt (R^2 + (Xc-XL)^2)= √ 301^2+ (663.48Ohms - 204.1 Ohm)^2
√ 90601 + (459.38)^2
√ 90601+211029.98
√ 301630.9844
= 549.209
Z = 549.21Ohms
2. I=V/Z = 120/ 549.21Ohms =0.218Ampere
3. P=V×I = 120* 0.218 = 26.16Watt
Note that
I rms = Vrms/Xc
= 120/663.48Ohms
= 0.18086A
4. I(max) = I(rms) × √2
= 0.18086A × 1.4142
= 0.2557
= 0.256A
5. V=I(max) * XL
= 0.256A ×204.1
=52.2496
= 52.250volts
6. V=I(max) × Xc
= 0.256A × 663.48Ohms
= 169.85volts
7. Xc=XL
1/2πfC = 2πfL
1/2πfC = 2πf× 0.650
1/2×3.14×f×4.80μF = 2×3.14×f×0.650
1/6.28×f×4.8×10^-6 = 4.082f
1/0.000030144× f = 4.082×f
1 = 0.000030144×f×4.082×f
1 = 0.000123f^2
f^2 = 1/0.000123048
f^2 = 8126.922
f =√8126.922
f = 90.14 Hz