Magnitude of acceleration = (change in speed) / (time for the change) .
Change in speed = (ending speed) - (starting speed)
= zero - (43 m/s)
= -43 m/s .
Magnitude of acceleration = (-43 m/sec) / (0.28 sec)
= (-43 / 0.28) (m/sec) / sec
= 153.57... m/s²
= 1.5... x 10² m/s² .
Answer:

Explanation:
The equation for centripetal acceleration is
.
We know the wheel turns at 45 rpm, which means 0.75 revolutions per second (dividing by 60), so our frequency is f=0.75Hz, which is the inverse of the period T.
Our velocity is the relation between the distance traveled and the time taken, so is the relation between the circumference
and the period T, then we have:

Putting all together:

A mixed cost contains a variable element and a fixed element.
Option a
<u>Explanation:</u>
Mixed costs are those costs that has both variable and fixed component. Example: operating cost of a machinery includes fixed costs that cannot be changed with other variable costs like fuel, insurance, depreciation, etc.
It is also named as semi-variable costs. And the formula to calculate mixed cost is as follows,

where,
- y is the "total cost
"
- a is the "fixed cost per period"
- b is the "variable rate per unit of activity"
- x is the "number of units of activity"
Answer:
3A
Explanation:
Rtoal=R1+R2+R3=5+10+15=30
I=V/R 90/30
I=3
Answer:
Please find the answer in the explanation
Explanation:
When you calculate the SLOPE of a line segment, what does the SLOPE represent? (Choose all that apply) the Distance traveled the Displacement the Velocity the Acceleration None of the above
The slope of any time graph can not give you distance or displacement except for position - time graph.
When you plot either distance or displacement against time, that is, distance time graph or displacement time graph, you can get speed or velocity as the slope of the line segment.
You can only acceleration as a slope in a line of best fit if velocity is plotted against time. That is, in a velocity time graph.