I believe the answer is B, a real and inverted image is formed on the side of the lens opposite the rubber ducky. The focal length is 15 cm and therefore the center of curvature (2F) will be 30 cm. When the object is placed between F and 2F (in this case 20 cm) in front of a convex lens, an inverted, real image is formed on the other side of the lens.
Answer:
effeciency n = = 49%
Explanation:
given data:
mass of aircraft 3250 kg
power P = 1500 hp = 1118549.81 watt
time = 12.5 min
h = 10 km = 10,000 m
v =85 km/h = 236.11 m/s


kinetic energy
kinetic energy 
gravitational energy 
total energy 


effeciency n = = 49%
Answer:
ENERGY AND COST. One kllowatt hour is 1,000 watts of power for one hour of time. ... Determine power: P = V XI ... Calculate the total kilowatt hours used. ... If the electric costs are 150 per kWh, how much does it cost to run the refrigerator in ... 8. A room was lighted with three 100-watt bulbs for 5 hours per day. If the cost of.
Explanation:
Answer:
The charge stored in the capacitor will stay the same. However, the electric potential across the two plates will increase. (Assuming that the permittivity of the space between the two plates stays the same.)
Explanation:
The two plates of this capacitor are no longer connected to each other. As a result, there's no way for the charge on one plate to move to the other.
, the amount of charge stored in this capacitor, will stay the same.
The formula
relates the electric potential across a capacitor to:
, the charge stored in the capacitor, and
, the capacitance of this capacitor.
While
stays the same, moving the two plates apart could affect the potential
by changing the capacitance
of this capacitor. The formula for the capacitance of a parallel-plate capacitor is:
,
where
is the permittivity of the material between the two plates.
is the area of each of the two plates.
is the distance between the two plates.
Assume that the two plates are separated with vacuum. Moving the two plates apart will not affect the value of
. Neither will that change the area of the two plates.
However, as
(the distance between the two plates) increases, the value of
will become smaller. In other words, moving the two plates of a parallel-plate capacitor apart would reduce its capacitance.
On the other hand, the formula
can be rewritten as:
.
The value of
(charge stored in this capacitor) stays the same. As the value of
becomes smaller, the value of the fraction will become larger. Hence, the electric potential across this capacitor will become larger as the two plates are moved away from one another.
Answer:
Explanation:
a )
The stored elastic energy of compressed spring
= 1 / 2 k X²
= .5 x 19.6 x (.20)²
= .392 J
b ) The stored potential energy will be converted into gravitational potential energy of the block earth system when the block will ascend along the incline . So change in the gravitational potential energy will be same as stored elastic potential energy of the spring that is .392 J .
c ) Let h be the distance along the incline which the block ascends.
vertical height attained ( H ) =h sin30
= .5 h
elastic potential energy = gravitational energy
.392 = mg H
.392 = 2 x 9.8 x .5 h
h = .04 m
4 cm .
=