An object with non-zero mass (even negligible mass is non-zero) will never reach the speed of light. Due to relativistic effects, each "unit" of acceleration becomes less effective at increasing your velocity (relative to some other object, of course) as your relative velocity approaches the speed of light.
And even if there was a way, If you would accelerate to the 99,99% of the speed light in just 1 second, you would experience a G-force of aprox. 30,600,000 g's which is enough to kill you in a few seconds
Answer:
If you apply a force to separate 2 opposite poles, the potential energy of the system increases.
Answer:

Explanation:
The gravitational force between the proton and the electron is given by

where
G is the gravitational constant
is the proton mass
is the electron mass
r = 3 m is the distance between the proton and the electron
Substituting numbers into the equation,

The electrical force between the proton and the electron is given by

where
k is the Coulomb constant
is the elementary charge (charge of the proton and of the electron)
r = 3 m is the distance between the proton and the electron
Substituting numbers into the equation,

So, the ratio of the electrical force to the gravitational force is

So, we see that the electrical force is much larger than the gravitational force.
The answer will be 8 because kedks
Answer:
The answer is "telescopes".
Explanation:
Throughout ancient times, astronomical observatories have indeed been available, and so many historical locations were reserved for astronomical observations. All contemporary astronomers lacked within those older telescopes were lenses until 1610. A telescope is indeed an instrument used to view far-off objects. Telescopes often are being used to look at planets and stars.