No, aluminum has a density near 2.7 g/cm^3
<span>7.8 g/cm^3 is near the density of iron (or in the case of a fork, steel).
this is it
</span>
Answer:
The displacement of the volleyball is 2.62 m
Explanation:
Given;
initial velocity of the volleyball, u = 7.5 m/s
final velocity of the volleyball, v = 2.2 m/s
displacement of the volleyball, d = ?
Apply the following kinematic equation;
v² = u² - 2gd
2gd = u² - v²

Therefore, the displacement of the volleyball is 2.62 m
Answer:
the final velocity of the object is 53.04 m/s.
Explanation:
Given;
initial velocity of the projectile, u = 50 m/s
displacement of the object, d = 16 m
let the final velocity of the object = v
Apply the following kinematic equation to determine the final velocity of the projectile.
v² = u² + 2gd
v² = 50² + (2 x 9.8 x 16)
v² = 2813.6
v = √2813.6
v = 53.04 m/s
Therefore, the final velocity of the object is 53.04 m/s.
Answer:
Inertia
Explanation:
Inertia is best defined as the ability of an object to resist a change in position or movement. That is why when an object has a higher mass, the higher the inertia. Imagine an oncoming truck that is fully loaded versus you. The tendency for the truck to change its movement would be difficult because of its its mass. It has a lot of inertia.
Answer:
a train
Explanation:
the train is longer the longer something is the more power it will have