1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sladkaya [172]
2 years ago
13

Two balls undergo a perfectly elastic head-on collision, with one ball initially at rest. if the incoming ball has a speed of 20

0 m/s . part a part complete what is the final speed of the incoming ball if it is much more massive than the stationary ball? express your answer using two significant figures. v1 = 200 m/s submitprevious answers correct part b part complete what is the final direction of the incoming ball with respect to the initial direction if it is much more massive than the stationary ball? forward submitprevious answers correct part c part complete what is the final speed of the stationary ball if the incoming ball is much more massive than the stationary ball?.
Physics
2 answers:
melamori03 [73]2 years ago
7 0
what is the final speed of the incoming ball if it is much more massive than the stationary ball? express your answer using two significant figures. v1 = 200 m / s submitprevious answers correct
 Perfectly elastic collisions means that both mechanical energy and
momentum are conserved.
 Therefore, for this case, we have the equation to find the final velocity of the incoming ball is given by
 v1f = ((m1-m2) / (m1 + m2)) v1i
 where,
 v1i: initial speed of ball 1.
 v1f: final speed of ball 1.
 m1: mass of the ball 1
 m2: mass of the ball 2
 Since the mass of the ball 1 is much larger than the mass of the ball 2 m1 >> m2, then rewriting the equation:
 v1f = ((m1) / (m1) v1i
 v1f = v1i
 v1f = 200 m / s
 answer
 200 m / s
 part b part complete what is the final direction of the incoming ball with respect to the initial direction if it is much more massive than the stationary ball? forward submitprevious answers correct

 Using the equation of part a, we can include in it the directions:
 v1fx = ((m1-m2) / (m1 + m2)) v1ix
 v1i: initial velocity of ball 1 in the direction of the x-axis
 v1f: final speed of ball 1 in the direction of the x-axis
 like m1 >> m2 then
 v1fx = v1ix
 v1fx = 200 m / s (positive x direction)
 So it is concluded that the ball 1 continues forward.
 answer:
 forward


 part c part complete what is the final speed of the stationary ball if the incoming ball is much more massive than the stationary ball ?.
 The shock is perfectly elastic. For this case, we have that the equation to find the final velocity of the stationary ball is given by
 v2f = ((2m1) / (m1 + m2)) v1i
 where,
 v1i: initial speed of ball 1.
 v2f: final speed of ball 2.
 m1: mass of the ball 1
 m2: mass of the ball 2
 Then, as we know that m1 >> m2 then
 v2f = ((2m1) / (m1) v1i
 v2f = 2 * v1i
 v2f = 2 * (200 m / s)
 v2f = 400 m / s
 answer
 400m / s
weqwewe [10]2 years ago
4 0

a) The final speed of the massive incoming ball is \boxed{200\,{{\text{m}} \mathord{\left/ {\vphantom {{\text{m}} {\text{s}}}} \right. \kern-\nulldelimiterspace} {\text{s}}}}.

b) <u>The direction of the motion of the incoming ball with respect to its initial position is in the forward direction</u>.<u> </u>

c) The final speed of the stationary ball due to the incoming massive ball is \boxed{{\text{400}}\,{{\text{m}} \mathord{\left/ {\vphantom {{\text{m}} {\text{s}}}} \right. \kern-\nulldelimiterspace} {\text{s}}}}.

Further Explanation:

Given:

The speed of the incoming ball is 200\,{{\text{m}} \mathord{\left/ {\vphantom {{\text{m}} {\text{s}}}} \right. \kern-\nulldelimiterspace} {\text{s}}}.

The second ball is initially at rest So, its initial velocity is 0\,{{\text{m}} \mathord{\left/ {\vphantom {{\text{m}} {\text{s}}}} \right. \kern-\nulldelimiterspace} {\text{s}}}.

Concept:

<u>Part (a): </u>

The two bodies moving towards one another when collide elastically; the momentum as well as the mechanical energy of the system remains conserved at the time of collision.

By using the conservation of momentum at the time of collision:

Mu{ & _1}+m{u_2}=M{v_1}+m{v_2}                                …… (1)

Here, M is the mass of the massive ball, m is the mass of lighter ball, {u_1}\,\& \,{u_2} are the initial speeds of the two bodies and {v_1}\,\& \,{v_2} are the final speeds of the bodies.

Substitute the values of {u_1}\,\& \,{u_2} in above expression.

M\times200+m\times0=\left({M\times {v_1}} \right)+\left({m\times{v_2}}\right)

SinceM>> >m, the above expression can be rearranged as:

\begin{aligned}200\times M&=\left(M\right){v_1}\\{v_1}&=200\left({\frac{M}{M}} \right)\\&=200\,{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace} {\text{s}}}\\\end{aligned}

Thus, the final speed of the incoming ball at collision is \boxed{200\,{{\text{m}} \mathord{\left/ {\vphantom {{\text{m}} {\text{s}}}} \right. \kern-\nulldelimiterspace} {\text{s}}}}.

<u>Part (b): </u>

The ball is moving in the forward direction and has no other velocity other than the forward direction. Initially, the ball started in the forward direction and finally it is moving with the speed 200\,{{\text{m}} \mathord{\left/ {\vphantom {{\text{m}} {\text{s}}}} \right. \kern-\nulldelimiterspace} {\text{s}}} in the forward direction only.

Therefore, it suggests that the massive ball is moving in forward direction with respect to its initial direction.

<u>Part (c): </u>

In order to obtain the final speed of the smaller ball after the collision, rearrange the equation (1) to obtain the final velocity of the second ball {v_2}.

\begin{aligned}{v_2}&={v_1}\left({\frac{{2M}}{M}}\right)\\&=200\left(2\right)\\&=400\,{{\text{m}} \mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace} {\text{s}}}\\\end{aligned}

Thus, the final speed of the smaller ball after collision with the massive ball is \boxed{400\,{{\text{m}} \mathord{\left/ {\vphantom {{\text{m}} {\text{s}}}} \right. \kern-\nulldelimiterspace} {\text{s}}}} in forward direction.

Learn More:

1. A 700-kg car, driving at 29 m/s, hits a brick wall and rebounds with a speed of 4.5 m/s brainly.com/question/9484203

2. What is the magnitude of the force that the car exerts on the truck brainly.com/question/2235246

3. A car traveling in a straight line at an initial speed of 8.0 meters per second accelerates uniformly brainly.com/question/6423792

Answer Details:

Grade: College

Subject: Physics

Chapter: Momentum Conservation

Keywords:

Momentum conservation, massive ball, smaller ball, perfectly elastic head-on collision, incoming ball has speed, final speed of the incoming ball.

You might be interested in
A person travelled 350 m east from his home and returns back home an hour has displacement of_?​
Svetradugi [14.3K]

Answer:

vector of zero magnitude

Explanation:

The displacement is a vector magnitude, therefore, in addition to being a module, it has direction and sense.

In this case it moved 350 m and then returned the same 350 m, so the total displacement is zero.

If we draw the vector, one has a directional direction to the right and the other direction to the left, therefore when adding the two vectors gives a vector of zero magnitude

7 0
2 years ago
Please help i would really appreciate it
Verdich [7]

Answer:

THE MINIONSSSSSSS AYEEEEE

Explanation:

4 0
2 years ago
Read 2 more answers
How much kinetic energy does a 50 kg rock has if its moving at a velocity of 2m/s
maria [59]

Answer:

KE = 100 J

Explanation: Should be correct

5 0
2 years ago
Write down one fact about each of the following crust, mantle, outer, core, &amp; inner core
Oksanka [162]

Answer:

Hope this help you!!

Explanation:

Crust : The crust is the thinnest layer of the Earth. It has an average thickness of about 18 miles below land, and around 6 miles below the oceans. The crust is the layer that makes up the Earth's surface and it lies on top of a harder layer, called the mantle.

Mantle : The mantle is the mostly-solid bulk of Earth's interior. The mantle lies between Earth's dense, super-heated core and its thin outer layer, the crust. The mantle is about 1,802 miles thick, and makes up a whopping 84% of Earth's total volume

Outer Core : The outer core is the third layer of the Earth. It is the only liquid layer, and is mainly made up of the metals iron and nickel, as well as small amounts of other substances. The outer core is responsible for Earth's magnetic field. As Earth spins on its axis, the iron inside the liquid outer core moves around.

Inner Core : It's Almost The Size of the Moon. The Earth's inner core is surprisingly large, measuring 1,516 miles across. It's Mostly Made of Iron. It Spins Faster Than the Surface of the Earth. It Creates a Magnetic Field.

5 0
2 years ago
What should the Architect do to ensure Field-Level Security is enforced on a custom Visualforce page using the Standard Lead Con
OLEGan [10]

Answer:

the Architect should use {!$FieldType.lead.accessible} expression within the Visualforce page.

Explanation:

Visualforce is a framework that allows developers to build complex,  user friendly interfaces that can be hosted primarily on the Lightning Platform

Controllers provide access to the data that should be displayed in a page, and can modify component behavior. a number of standard controllers are provided by The Lightning platform that contain  functionality and logic that which are used for standard Salesforce pages

The Architect should Use the expression {!$FieldType.lead.accessible}  within the Visualforce page.

3 0
3 years ago
Other questions:
  • How does energy move predictably between a lien water in the air above it
    10·1 answer
  • (b) Find the position, velocity, and acceleration of the mass at time t = 5π/6.
    14·1 answer
  • How does the speed of an object influence its momentum
    12·1 answer
  • which of these changes does a submarine encounter as it returns from the bottom of the ocean to the surface of the ocean? a. the
    9·2 answers
  • Particles in a warmer block will have
    13·1 answer
  • Describe how work is done by a skater pulling in her arms during a spin. In particular, identify the force she exerts on each ar
    6·1 answer
  • What is the structure of a magnet?
    11·1 answer
  • Unpolarized light with intensity 300 W m2 is incident on three polarizers, P1, P2, and P3 numbered in the order light reaches th
    8·1 answer
  • Why is your State have dimensions ​
    9·1 answer
  • Unas niñas en el receso estaban jugando a derramar flatulencias en un frasco de forma cilíndrica, cuyo radio tenía 5" y una altu
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!