Answer:
66.2 % of O
Explanation:
Our compound is the lithium nitrite.
LiNO₂
This salt is ionic and can be dissociated: LiNO₂ → Li⁺ + NO₂⁻
We determine the molar mass:
molar mass of Li + 3 . molar mass of N + 6 . molar mass of O
6.94 g/mol + 3. 14 g/mol + 6 . 16 g/mol = 144.94 g/mol
The mass of oxygen contained in 1 mol of lithium nitrite is:
6 . 16 g/mol = 96 g
So the percentage of oxygen present is:
(96 g / 144.94 g) . 100 = 66.2 %
Answer:
They increase the attractive forces between the solute and solvent particles.
Explanation:
The dissolution of a solute in a solvent depends on interaction between the solute and the solvent. The more the attractive force and interaction between solute and solvent, the greater the greater the rate of dissolution of the solute in the solvent.
The absence of interaction between solute and solvent molecules means that the substance can not dissolve in that particular solvent. Hence, any factor that enhances solute-solvent interaction will enhance dissolution of a solute in a particular solvent.
Answer:
False
Explanation:
The statement ; Regardless of any concentration of ammonium solution the precipitate of unknown halide after 0.1M AgNO3 will remain is FALSE
This is Because the remaining concentration of AgNO3 is dependent on the solubility of Ag⁺
F. hold on to their protons more strongly
State the order in which the ions associated with a compound composed of potassium and bromine would be written in the chemical formula and the compound name.