I believe the answer is C because the first two are mechanical hazards and C mentions plug which is electrical.
A scientific model is a simplified version of some phenomenon that takes place in natural systems. A scientific model can be visual (flow charts), graphical, conceptual, or mathematical. These models are used to make predictions about how a set of conditions would change the present scenario in future. Scientific models can explain how the ongoing changes in the environment can show long term affect on our planet like the climate change. Therefore, a scientific model can be used to explain the phenomena like the effect of global air temperatures on the mean sea level around the world.
Answer:
mass of HNO₃ = 0.378 g
Explanation:
Normality = Molarity * number of equivalents
Molarity = Normality/number of equivalents
normality of HNO₃ = 0.30 N, Volume = 20 mL
HNO₃ ionizes in the following way:
HNO₃(aq) ----> H⁺ + NO₃⁻
Therefore, number of equivalents for HNO₃ is 1
molarity of HNO₃ = 0.30/1 =0.30 mol/dm³
Using the formula, molarity = number of moles/volume in liters
number of moles = molarity * volume
Number of moles of HNO₃ = 0.30 mol/dm³ * 20ml * 1 dm³ /1000 mL
number of moles = 0.006 moles
From the formula, mass = number of moles * molar mass
molar mass of HNO₃ = 63.0 g/mol
mass = 0.006 * 63
mass of HNO₃ = 0.378 g
Homogeneous Mixture:
<span>It may be mistaken for a pure substance.
</span><span>It can be separated using distillation
</span>
Heterogeneous Mixture:
<span>Its components are visible
</span><span>It can be separated using distillation.
Concrete is an example of this kind of mixture.
</span>
Hope this helps!
Answer:
800.0 mL.
Explanation:
- To solve this problem; we must mention the rule states the no. of millimoles of a substance before and after dilution is the same.
<em>(MV)before dilution of HCl = (MV)after dilution of HCl</em>
M before dilution = 12.0 M, V before dilution = 100.0 mL.
M after dilution = 1.5 M, V after dilution = ??? mL.
∵ (MV)before dilution of HCl = (MV)after dilution of HCl
∴ (12.0 M)(100.0 mL) = (1.5 M)(V after dilution of HCl)
<em>∴ V after dilution of HCl = (12.0 M)(100.0 mL)/(1`.5 M) = 800.0 mL.</em>