The value of the force, F₀, at equilibrium is equal to the horizontal
component of the tension in string 2.
Response:
- The value of F₀ so that string 1 remains vertical is approximately <u>0.377·M·g</u>
<h3>How can the equilibrium of forces be used to find the value of F₀?</h3>
Given:
The weight of the rod = The sum of the vertical forces in the strings
Therefore;
M·g = T₂·cos(37°) + T₁
The weight of the rod is at the middle.
Taking moment about point (2) gives;
M·g × L = T₁ × 2·L
Therefore;

Which gives;


F₀ = T₂·sin(37°)
Which gives;

<u />
Learn more about equilibrium of forces here:
brainly.com/question/6995192
Answer:
x = 5[km]
Explanation:
We must convert the time from minutes to hours.
![t=30[min]*\frac{1h}{60min}= 0.5[h]\\](https://tex.z-dn.net/?f=t%3D30%5Bmin%5D%2A%5Cfrac%7B1h%7D%7B60min%7D%3D%200.5%5Bh%5D%5C%5C)
We know that speed is defined as the relationship between space and time.

where:
x = space [m]
t = time = 0.5 [h]
v = velocity [m/s]
Now replacing:
![x = 10[\frac{km}{h} ]*0.5[h]\\x=5[km]](https://tex.z-dn.net/?f=x%20%3D%2010%5B%5Cfrac%7Bkm%7D%7Bh%7D%20%5D%2A0.5%5Bh%5D%5C%5Cx%3D5%5Bkm%5D)
Answer:
Expression of work done is

Work done to move the sled is given as 187.2 J
Explanation:
As we know that the formula of work done is given as

here we know that
F = 12.6 N
d = 15.4 m

so we will have


Answer:
It’s 18.0 m/s
Explanation:
Use acceleration formula then plug in 9.8 and 1.84s
Answer:
A ball hits the ground and the ground pushes up on it
Explanation:
Newton's third law basically states that for every action, there's a reaction.
a ball hitting the ground would be the action. the ground pushing up on it with the same force is the reaction.
Hope this Helps!!! :)