Answer:
Decreases to half.
Explanation:
From the question given above, the following data were obtained:
Initial mass (m₁) = m
Initial force (F₁) = F
Initial acceleration (a₁) =?
Final mass (m₂) = ½m
Final force (F₂) = ¼F
Final acceleration (a₂) =?
Next, we shall determine a₁. This can be obtained as follow:
F₁ = m₁a₁
F = ma₁
Divide both side by m
a₁ = F / m
Next, we shall determine a₂.
F₂ = m₂a₂
¼F = ½ma₂
2F = 4ma₂
Divide both side by 4m
a₂ = 2F / 4m
a₂ = F / 2m
Finally, we shall determine the ratio of a₂ to a₁. This can be obtained as follow:
a₁ = F / m
a₂ = F / 2m
a₂ : a₁ = a₂ / a₁
a₂ / a₁ = F/2m ÷ F/m
a₂ / a₁ = F/2m × m/F
a₂ / a₁ = ½
Cross multiply
a₂ = ½a₁
From the illustrations made above, the acceleration of the car will decrease to half the original acceleration
Answer:
120,000
Explanation:
Millimeters to meters calculation-
Multiply by 1,000.
120 x 1,000 = 120,000.
This is the correct answer and formula.
Hope this helps!
Answer:
T = 0.225 s
Explanation:
The speed of a projectile at the highest point of its motion is the horizontal speed of the projectile. Considering the horizontal motion with negligible air resistance, we can use the following formula:

where,
T = Total time of ball in air = ?
R = Horizontal distance covered = 40 m
= horizontal speed = 9 m/s
Therefore,

<u>T = 0.225 s</u>
Answer:
y = 17 m
Explanation:
For this projectile launch exercise, let's write the equation of position
x = v₀ₓ t
y =
t - ½ g t²
let's substitute
45 = v₀ cos θ t
10 = v₀ sin θ t - ½ 9.8 t²
the maximum height the ball can reach where the vertical velocity is zero
v_{y} = v_{oy} - gt
0 = v₀ sin θ - gt
0 = v₀ sin θ - 9.8 t
Let's write our system of equations
45 = v₀ cos θ t
10 = v₀ sin θ t - ½ 9.8 t²
0 = v₀ sin θ - 9.8 t
We have a system of three equations with three unknowns for which it can be solved.
Let's use the last two
v₀ sin θ = 9.8 t
we substitute
10 = (9.8 t) t - ½ 9.8 t2
10 = ½ 9.8 t2
10 = 4.9 t2
t = √ (10 / 4.9)
t = 1,429 s
Now let's use the first equation and the last one
45 = v₀ cos θ t
0 = v₀ sin θ - 9.8 t
9.8 t = v₀ sin θ
45 / t = v₀ cos θ
we divide
9.8t / (45 / t) = tan θ
tan θ = 9.8 t² / 45
θ = tan⁻¹ ( 9.8 t² / 45
)
θ = tan⁻¹ (0.4447)
θ = 24º
Now we can calculate the maximum height
v_y² =
- 2 g y
vy = 0
y = v_{oy}^2 / 2g
y = (20 sin 24)²/2 9.8
y = 3,376 m
the other angle that gives the same result is
θ‘= 90 - θ
θ' = 90 -24
θ'= 66'
for this angle the maximum height is
y = v_{oy}^2 / 2g
y = (20 sin 66)²/2 9.8
y = 17 m
thisis the correct