F = ma
F = applied force in newtons = to be determined
m = mass of the car = 2,500 kg
a = acceleration of the car = 3.5 m/s²
F = (2,500 kg)(3.5 m/s²)
F =8750
The final speed of the orange is 7.35 m/s
Explanation:
The motion of the orange is a free fall motion, since there is only the force of gravity acting on it. Therefore, it is a uniformly accelerated motion with constant acceleration
towards the ground. So we can use the following suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
t is the time elapsed
For the orange in this problem, we have
u = 0 (it is dropped from rest)
is the acceleration
Substituting t = 0.75 s, we find the final velocity (and speed) of the orange:

Learn more about free fall:
brainly.com/question/1748290
brainly.com/question/11042118
brainly.com/question/2455974
brainly.com/question/2607086
#LearnwithBrainly
Average acceleration is
Change in Velocity/change in time
So you could then do Vf-Vi/Tf-Ti
Which would look like 13m/s-6m/s / 1s-0s
Which then is 7m/s/1s which means the acceleration is 7m/s^2
Answer:
A) Gravitational Force is greater in S.
B) Time taken to fall a given distance in air will be greater for F.
C) Both will take same time to fall in a vacuum.
D) Total force is greater in S.
Explanation:
(a) In this case, the gravitational force of S will be greater, because Newton's Second Law states that - F = ma, or weight =mg. g is constant. And mass of the solid metal is heavier.
(b) In this case, the time it will take for F to fall from a given distance in air will be greater than that of S, since the air resistance is not negligible (as in the case of S).
(c) In this, It will take same time for S and F because in a vacuum, there are no air particles, so there is no air resistance and gravity is the only force acting and so objects fall at the same rate in a vacuum.
(d) The total force will be greater in S than F because Force=ma and S is of heavier mass than F.
Decreases the input force