Two radius of an atom is equal to the diameter. Adding up all the diameter of the atoms, it should be equal to 9.5 mm. Therefore, we simply convert the units to the same units then divide 1.35 A to 9.5 mm. We calculate as follows:
no. of atoms = 0.0095 m / 1.35x10^-9 m = 7037037 atoms
Hope this answers the question. Have a nice day.
I think the correct answer would be the third option. The reason I2 has a higher melting point than F2 is because I2 possesses a more polarizable electron cloud. I2 contains more electrons than F2 which would result to a stronger intermolecular forces. Having stronger intermoleculer forces would mean more energy is needed to break the bonds so a higher melting point would be observed.
Answer:
<em> 1</em>. A. 0
<em>2</em>. B. 7
<em>3. </em>C<em>.</em><em> </em>4
Explanation:
1. charge is equal to the number of protons minus the number of electrons!
2. neutrons is equal to mass number minus atomic number!
3. valence electrons equal 4!
Hope this helped you! :)
The question is incomplete. The complete question is :
Hydrogen is manufactured on an industrial scale by this sequence of reactions:


The net reaction is :

Write an equation that gives the overall equilibrium constant
in terms of the equilibrium constants
and
. If you need to include any physical constants, be sure you use their standard symbols, which you'll find in the ALEKS Calculator.
Solution :

...............(1)

...................(2)

![$K=\frac{[CO_2][H_2]^4}{[CH_4][H_2O]^2}$](https://tex.z-dn.net/?f=%24K%3D%5Cfrac%7B%5BCO_2%5D%5BH_2%5D%5E4%7D%7B%5BCH_4%5D%5BH_2O%5D%5E2%7D%24)
On multiplication of equation (1) and (2), we get
![$K_1 \times K_2=\frac{[CO][H_2]^3}{[CH_4][H_2O]} \times \frac{[CO_2][H_2]}{[CO][H_2O]}$](https://tex.z-dn.net/?f=%24K_1%20%5Ctimes%20K_2%3D%5Cfrac%7B%5BCO%5D%5BH_2%5D%5E3%7D%7B%5BCH_4%5D%5BH_2O%5D%7D%20%5Ctimes%20%5Cfrac%7B%5BCO_2%5D%5BH_2%5D%7D%7B%5BCO%5D%5BH_2O%5D%7D%24)
.................(4)
Comparing equation (3) and equation (4), we get
