Explanation:
We have,
Semimajor axis is 
It is required to find the orbital period of a dwarf planet. Let T is time period. The relation between the time period and the semi major axis is given by Kepler's third law. Its mathematical form is given by :

G is universal gravitational constant
M is solar mass
Plugging all the values,

Since,

So, the orbital period of a dwarf planet is 138.52 years.
To solve this problem we will apply the concepts related to the Force of gravity given by Newton's second law (which defines the weight of an object) and at the same time we will apply the Hooke relation that talks about the strength of a body in a system with spring.
The extension of the spring due to the weight of the object on Earth is 0.3m, then


The extension of the spring due to the weight of the object on Moon is a value of
, then

Recall that gravity on the moon is a sixth of Earth's gravity.




We have that the displacement at the earth was
, then


Therefore the displacement of the mass on the spring on Moon is 0.05m
Answer:
. Doppler ultrasound is based on absorption of sound, and other
ultrasound technology is based on reflection.D.
Explanation:
Sippen lein an hr later is theanswer to both
Answer:
Rs. 480.00
Explanation:
1kW = 1000W
therefore 500W = 0.5kW
20 × 24hrs = 480hrs in total.
0.5kW × 480hrs = 240kWh
if rs. 2 for 1kWh
then, 240kWh × 2 = Rs. 480.