1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alukav5142 [94]
3 years ago
15

The shock absorbers in a car act as a

Physics
1 answer:
Varvara68 [4.7K]3 years ago
8 0

Answer: it's 69200

Explanation:

I gotchu guys

You might be interested in
Let A be the last two digits and let B be the sum of the last three digits of your 8-digit student ID. (Example: For 20245347, A
zheka24 [161]

Answer:

The speed is 173 m/s.

Explanation:

Given that,

A = 47

B = 14

Length 1 urk = 58.0 m

An hour is divided into 125 time units named dorts.

3600 s = 125 dots

dorts = 28.8 s

Speed v= (25.0+A+B) urks/dort

We need to convert the speed into meters per second

Put the value of A and B into the speed

v=25.0+47+14

v =86\ urk s/dort

v=86\times\dfrac{58.0}{28.8}

v=173.19\ m/s

Hence, The speed is 173 m/s.

7 0
3 years ago
A child is trying to throw a ball over a fence. She gives the ball an initial speed of 8.0 m/s at an angle of 40° above the hori
EastWind [94]

Answer:

the child is 1.581 m far from the fence

Explanation:

The diagrammatic illustration that give a better view of what the question denote can be seen in the image attached below.

From the image attached below, let assume that the release point is the origin, then equation of the motion (x) is as follows:

x - x_o = u_xt

\mathtt{x = u_xt  \ \  \ since (x_o = 0)}  ---- (1)

the equation of the motion y is :

\mathtt{y - y_o =u_yt - 0.5 gt^2}

\mathtt{y = u_yt-4.9t^2     \ \ \  since (y_o =0)}

\mathtt{ 1= (u \ sin 40^0)t -4.9 \ t^2        }

\mathtt{1 = 8 sin 40^0 t - 4.9 t^2}

\mathtt{1 = 5.14t - 4.9t^2}

\mathtt{4.9t^2 - 5.14t +1 = 0}

By using the quadratic formula, we have;

\mathtt{ \dfrac{ -b \pm \sqrt{b^2 - 4ac}}{2a}}     }

where;

a = 4.9,   b = -5.14     c = 1

= \mathtt{ \dfrac{ -(-5.14) \pm \sqrt{(-5.14)^2 - 4(4.9)(1)}}{2(4.9)}}     }

= \mathtt{ \dfrac{ 5.14 \pm \sqrt{26.4196 -19.6}}{9.8}}     }

= \mathtt{ \dfrac{ 5.14 \pm \sqrt{6.8196}}{9.8}}     }

= \mathtt{ \dfrac{ 5.14+ \sqrt{6.8196}}{9.8}  \  \ OR \  \  \dfrac{ 5.14- \sqrt{6.8196}}{9.8}}    }

= \mathtt{ \dfrac{ 5.14+ 2.6114}{9.8}  \  \ OR \  \  \dfrac{ 5.14- 2.6114}{9.8}}    }

= \mathtt{ \dfrac{ 7.7514}{9.8}  \  \ OR \  \  \dfrac{ 2.5286}{9.8}}    }

= \mathbf{ 0.791 \  \ OR \  \  0.258}    }

In as much as the ball is traveling upward, then we consider t= 0.258sec.

From equation (1)

\mathtt{x = u_x(0.258)}

\mathtt{x = ucos 40^0 (0.258)}

\mathtt{x = 8 \ cos 40^0 (0.258)}

\mathbf{x = 1.581  \ m}

Thus, the child is 1.581 m far from the fence

6 0
3 years ago
In the shadow of a tree with a dense, leafy canopy, one sees a number of light spots. Surprisingly, they all appear to be circul
Bad White [126]

The characteristics of the diffraction phenomenon allow to find the result for the shape of the points of light that you pass the tree is:

  • The shape of the dots is circular because it is in the range of far-field diffraction.

Diffraction is the phenomenon where the undulatory part of the light becomes evident, it is the interference of the waves that make up each ray of light, for this phenomenon to occur it must be fulfilled that the wavelength is of the order of the space where pass the light.

In the leafy tree it has many leaves, but there are spaces between them, some of these spaces are small and it fulfills the diffraction condition, therefore we see bright spots and not a continuous shadow.

Diffraction can be classified depending on the distance to the observer:

  • Near field or fresnel. In this case the distance from the observer is small and we can see the shape of the object that creates the diffraction.
  • Far field or Fraunhoger. In this case the distance between the obstacle (leaves) and the person is great, here the information on the shape of things is lost and we have two observable forms. Lines for the case of slits and circles for the case of objects with a closed shape.

In this case, the distance from the leaves to the observer is large, therefore we are in the case of far-field diffraction and since the edge of the leaves that forms the diffraction is closed, the observable shape is a circle.

In conclusion using the characteristics of the diffraction phenomenon we can find the result for the shape of the points of light that pass the tree is:

  • The shape of the dots is circular because it is in the range of far-field diffraction.

Learn more about diffraction here:  brainly.com/question/20140459

8 0
2 years ago
At present most of the world's energy needs are supplied by what kind of energy
antiseptic1488 [7]

Fossil fuels . . . coal, oil, natural gas

Among primitive cultures, wood is an important source.
4 0
3 years ago
an object moving with uniform acceleration has a velocity of 12.ocm/s. if its x coordinate 2.00 later is 25.00cm what is its acc
Viktor [21]
<span> We're given that x=25 when t=2: </span>

<span>25 = 3 + 12(2) + (1/2)a(2)^2 </span>

<span>Thus a = -1 cm/sec^2</span>
4 0
3 years ago
Other questions:
  • A diagram of the carbon-oxygen cycle is shown below.
    11·2 answers
  • A lightbulb becoming lit is an example of this
    11·2 answers
  • Three pucks A, B, and C are shown sliding across ice at the noted speeds. Air and ice friction forces
    7·1 answer
  • A driver of a car traveling at -15m/s applies the brakes, causing a uniform acceleration of +2.0m/s2. If the brakes are applied
    14·1 answer
  • The synthesis of nitrogen trihydride from nitrogen gas and hydrogen gas is shown by which balanced chemical equation?
    15·2 answers
  • Why does the Sun appear so big, bright, and hot if it is<br> only an average sized star?
    11·2 answers
  • Which of the following is not a compound <br> A. Gold <br> B. Water<br> C. Salt<br> D. Sugar
    13·1 answer
  • What is Newton's 3rd law of motion?
    10·1 answer
  • Why thermos flask used​
    15·1 answer
  • When an object moves, stops moving, changes speed, or changes direction, how do scientists describe that condition? Question 1 o
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!