Answer:
the sum of average kinetic molecules of the body is called temperature..
Answer:nothing beats the chemistry between us :) smooth right?
Explanation:I’m pretty sure u have to show the part before the questions so that people can respond to it since there is no info on how to answer the question :p
The equilibrium vapour pressure is typically the pressure exerted by a liquid .... it is A FUNCTION of temperature...
Explanation:
By way of example, chemists and physicists habitually use
P
saturated vapour pressure
...where
P
SVP
is the vapour pressure exerted by liquid water. At
100
∘
C
,
P
SVP
=
1
⋅
a
t
m
. Why?
Well, because this is the normal boiling point of water: i.e. the conditions of pressure (i.e. here
1
⋅
a
t
m
) and temperature, here
100
∘
C
, at which the VAPOUR PRESSURE of the liquid is ONE ATMOSPHERE...and bubbles of vapour form directly in the liquid. As an undergraduate you should commit this definition, or your text definition, to memory...
At lower temperatures, water exerts a much lower vapour pressure...but these should often be used in calculations...especially when a gas is collected by water displacement. Tables of
saturated vapour pressure
are available.
Answer:
Most common insulation materials work by slowing conductive heat flow and--to a lesser extent--convective heat flow. Radiant barriers and reflective insulation systems work by reducing radiant heat gain. To be effective, the reflective surface must face an air space.
Explanation:
To be effective, the reflective surface must face an air space.
Liquids have free and fast moving particles. Liquids do not take a specific shape unless they are enclosed such as in a bottle. Anyway, since they are free flowing when they freeze, their movement becomes very slow. Eventually the particles will not have room to move as they used to and will be held in one place. The particles are still moving but they are only shaking or vibrating in the same place. You can't even tell this movement is happening, and that is what happens when liquid freezes.