Answer:
f(x) = (x - 3)(x + 1) → Corresponds with the first (raised higher ) ∪ shaped graph
f(x) = -2(x - 1)((x + 3) → Corresponds with the ∩ shaped graph
f(x) = 0.5(x - 6)((x + 2) → Corresponds with the second (lower) ∪ shaped graph
Step-by-step explanation:
For the function f(x) = (x - 3)(x + 1)
We have;
When x = 0, y = -3
When y = 0 x = 3 or -1
Comparing with the graphs, it best suits the first ∪ shaped graph that rises here than the other ∪ shaped graph
For the function;
f(x) = -2(x - 1)((x + 3)
When x = 0, y = 6
When y = 0, x = 1 or -3
Which corresponds with the ∩ shaped graph
For the function;
f(x) = 2(x + 6)((x - 2)
When x = 0, y = -24
When y = 0, x = -6 or 2
Graph not included
For the function;
f(x) = 0.5(x - 6)((x + 2)
When x = 0, y = -6
When y = 0, x = 6 or -2
Which best suits the second ∪ shaped graph that is lower than the other (first) ∪ shaped graph
For the function;
f(x) = 0.5(x + 6)((x - 2)
When x = 0, y = -6
When y = 0, x = -6 or 2
Graph not included
For the function;
f(x) = (x + 3)((x - 1)
When x = 0, y = -3
When y = 0, x = -3 or 1
Graph not included
Answer:
4
Step-by-step explanation:
19 = 7 + 3r
12 = 3r
4 = r
A student can take three subjects in 40 ways.
<u>SOLUTION:</u>
Given that, there are 4 different math courses, 5 different science courses, and 2 different history courses.
A student must take one of each, how many different ways can this be done?
Now, number ways to take math course = 4
Number of ways to take science course = 5
Number of ways to take history course = 2
So, now, total possible ways = product of possible ways for each course = 4 x 5 x 2 = 40 ways.
Hence, a student can take three subjects in 40 ways.
Answer:
Inequality
Step-by-step explanation:
Inequality is show a comparison between the two quantities which are unequal.
It can be represented:
≤ ⇒ less than or equal to
< ⇒ less than
≠ ⇒ not equal to
> ⇒ greater than
≥ greater than or equal to
<u><em>Kavinsky</em></u>