From the geometry of the problem, the 20 m-long cable creates
the hypotenuse of a right triangle, with the extended of the other two sides of
size 20 m * cos(30 deg), which is around 17.3 m. Therefore, the ball has increased
by 20 m - 17.3 m = 2.7 m.
The potential energy will have altered by m*g*h, which is 1400 kg * 9.8 m/s^2 *
1.6 m , or about 37044 joules.
Answer:
Explanation:
The form of Newton's 2nd Law that we use for this is:
F - f = ma where F is the Force pulling the mass down the ramp forward, f is the friction trying to keep it from moving forward, m is the mass and a is the acceleration (and our unknown).
We know mass and we can find f, but we don't have F. But we can solve for that by rewriting our main equation to reflect F:
That's everything we need.
w is weight: 6.0(9.8). Filling in:
6.0(9.8)sin20 - .15(6.0)(9.8) = 6.0a and
2.0 × 10¹ - 8.8 = 6.0a and
11 = 6.0a so
a = 1.8 m/s/s
Here current is flowing through the copper wire so this shows that copper is good conductor of electricity.
It is having less resistance as it conducts the current easily
Now a rubber coating on it will protect us from electric shock
So this property shows that rubber is a bad conductor of electricity
It is having large electrical resistance due to which it will conduct no current
Rubber : - No transmittance of electricity
copper :- good transmittance of electricity
The first thing you should know for this case is that work is defined as the product of force by the distance traveled in the direction of force.
We have then:
W = Fd
The distance varies, so we must integrate:
from 0 to 20:
W = ∫F (x) dx
W = ∫32xdx
W = 32∫xdx
W = 32 (x ^ 2/2) = (16) (20 ^ 2) = 6400 ft * lbs
answer:
6400 ft * lbs is work done pulling the rope up 20 ft
Answer:
upward force acting = 261.6 N
Explanation:
given,
mass of gibbon = 9.4 kg
arm length = 0.6 m
speed of the swing
net force must provide

force of gravity = - mg

= 
= 
=9 x 29.067
= 261.6 N
upward force acting = 261.6 N