Answer:
A and c, hope i helped xx
Explanation:
The gravitational constant was experimentally measured by W Cavendish using the attraction between big and small lead balls. is true
The correct answer is true
<h3>How do you define gravitational constant?</h3>
the strength of gravity. a factor in use in Newton's gravity law to relate the strength of the gravitational pull between two bodies with their masses and distance from one another. 6.67259 X 10-11 newtons per square kilogram is roughly the gravitational constant. G is its identifier.
<h3> where is the strongest gravity is?</h3>
The gravitational pull of the earth is greatest near sea level, normally, and weakens as you get further from the center, such as to the summit of Mt. Everest. Because the obloid earth was slightly wider, but only by a minor ratio, the gravity just at poles is stronger than that at the equator.
To know more about gravitational constant visit:
brainly.com/question/858421
#SPJ9
Answer:
Acceleration of the crate is 0.362 m/s^2.
Explanation:
Given:
Mass of the box, m = 40 kg
Applied force, F = 15 N
Angle at which the force is applied,
= 15°
We have to find the magnitude of the acceleration.
Let the acceleration be "a".
FBD is attached with where we can see the horizontal and vertical component of force.
⇒
and ⇒ 
⇒
⇒ 
⇒ Applying concept of forces.
⇒
⇒ 
⇒
<em> ...Newtons second law Fnet = ma</em>
⇒
⇒ Plugging the values.
⇒
<em>...f is the friction which is zero here.</em>
⇒ 
⇒ 
Magnitude of the acceleration of the crate is 0.362 m/s^2.
Answer:
The correct option is;
a- sea surface temperature anomaly, in degrees Celsius
Explanation:
From the diagram related to the question we have two graphs super imposed of Sea surface temperature anomaly, in degrees Celsius and cholera incidence anomaly (%) both plotted against time in years.
On the left the y-axis represents the sea surface temperature anomaly while on the right, the y-axis represents the cholera incidence anomaly (%).
The display of the graph shows the sea surface temperature anomaly in blue.
Answer:
Explanation:
liquids have definite volume
liquids do not have definite shape. The take the shape of the container in which they are kept.
gases do not have definite volume.
gases do not have definite shape. They take the shape of the container in which they are kept.
Hope this helps
plz mark as barinliest!!!!!!
Stay safe!