1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
JulsSmile [24]
2 years ago
14

Pleeeeeeeeeeeese HELP!!!!!!!!!

Physics
1 answer:
Mariana [72]2 years ago
3 0

this is in order.

LANDFILL

GROUNDWATER

PESTICIDE

FERTILIZER

HAZARDOUS WASTE

SEPTIC SYSTEM

SEEPAGE

You might be interested in
What is the difference between the equilibrium vector and the resultant vector
Tresset [83]

the difference between a resultant and equilibrant vector is that resultant vector is a direct quantity, one with both magnitude and direction, while the equilibrant vector is a force equal to, but opposite of, the resultant sum of vector forces, that force which balances other forces.

8 0
3 years ago
when the particles of the medium move back and forth along the direction of the wave motion, the wave is a
Bezzdna [24]

Transverse waves are always characterized by particle motion being perpendicular to wave motion. A longitudinal wave is a wave in which particles of the medium move in a direction parallel to the direction that the wave moves.

8 0
3 years ago
Read 2 more answers
Please don’t troll. I need someone to actually answer these questions.
mash [69]

Answer:

-3+3 i think this is the answer

Explanation:

i think you can ask someone else sorry

4 0
2 years ago
The temperature of a 700.96 gram piece of metal falls 120⁰C and in the process releases 2001 Joules of energy. What is the speci
olga nikolaevna [1]

Answer:

The specific heat for the metal is 0.466 J/g°C.

Explanation:

Given,

Q = 1120 Joules

mass = 12 grams

T₁ = 100°C

T₂ = 300°C

The specific heat for the metal can be calculated by using the formula

Q = (mass) (ΔT) (Cp)

ΔT = T₂ - T₁ = 300°C  - 100°C   = 200°C

Substituting values,

1120 = (12)(200)(Cp)

Cp = 0.466 J/g°C.

Therefore, specific heat of the metal is 0.466 J/g°C.

8 0
3 years ago
A 3.9 g dart is fired into a block of wood with a mass of 24.6 g. The wood block is initially at rest on a 1.5 m tall post. Afte
Galina-37 [17]

Answer:

46.48m/s

Explanation:

The problem is a combination of the principle of conservation of linear momentum and projectile motion.

The principle of conservation of linear momentum states that in a closed system, the total momentum of colliding bodies before impact is equal to the total momentum after impact. The masses stated in the problem experienced an inelastic collision. In an inelastic collision, the bodies involved stick together after the collision and move with a common velocity.

For two bodies of masses m_1 and m_2 moving with velocities u_1 and u_2 before impact, if they experience inelastic collision, the conservation of their momenta is as stated in equation (1);

m_1u_1+m_2u_2=(m_1+m_2)v..................(1)

were v is their common velocity after impact. If the second mass m_2 was at rest before the impact, then its initial velocity u_2=0m/s. therefore m_2u_2=0. Equation (1) then becomes;

m_1u_1=(m_1+m_2)v..............(2)

In the problem stated, the second mass taken as the mass of the wooden block was at rest before the impact and the collision was inelastic since both the wood and the dart stuck together and moved with a common velocity after the impact. Therefore we can use equation (2) for the problem.

Given;

m_1=3.9g=0.0039kg\\u_1=?\\m_2=24.6g=0.0246kg\\v=?

Substituting these values into (2), we get the following;

0.0039*u_1=(0.0039+0.024)v\\0.0039u_1=0.0285v.........(3)

Their common v velocity after impact now makes both the wooden block and the dart (as a single body) to fall vertically through a height h of 1.5m over a range R of 3.5m as stated by the problem; hence by the principle of projectile motion for a body projected horizontally, the following relationship holds;

R= vt............(4)

were t is the time taken to fall through the height h. To obtain t we use the second equation of free fall under gravity;

h=\frac{1}{2}gt^2...........(5)

were g is acceleration due to gravity taken as 9.8m/s^2. Therefore;

1.5=\frac{1}{2}*9.8*t^2\\1.5=4.9t^2\\t^2=\frac{1.5}{4.9}=0.306\\t=\sqrt{0.306} =0.55s

We then substitute R and t into equation (4) to obtain v.

3.5=v*0.55\\v=\frac{3.5}{0.55}\\v=6.36m/s

We now further substitute this value of v into (3) to obtain u_1;

u_1=\frac{0.0285v}{0.0039}\\\\u_1=\frac{0.0285*6.36}{0.0039}\\\\u_1=\frac{0.18126}{0.0039}\\\\u_1=46.48m/s

4 0
3 years ago
Other questions:
  • Which of the following is an elastic collision?
    14·2 answers
  • where F is the magnitude of the gravitational attraction on either body, m1 and m2 are the masses of the bodies, r is the distan
    5·1 answer
  • A brick is dropped with zero initial speed from the roof of a building and strikes the ground in 1.90 s. How tall is the buildin
    11·1 answer
  • What is the base number for the metric system of units? In other words, by what number do we multiply to move up in scale ? ____
    10·2 answers
  • A car with a constant velocity of 22 m/s is driven for 6.8 s. How far did it travel? (V =A d/AT)
    10·1 answer
  • What are the representative particles of elements, ionic compounds, and covalent compounds called?
    9·1 answer
  • If mechanical energy is conserved in a system the energy at any point in time can be in the form of
    11·1 answer
  • Can someone define 'work' for me please? I looked it up but there are a lot of different answers. The physics type, not a job :)
    15·1 answer
  • Question 19 of 20
    12·1 answer
  • PLEASE HELP WILL GIVE BRAINLIEST!!! DUE SOON!! GIVE ME 2 REASONS WHY
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!